33 research outputs found
On a matrix method for the study of small perturbations in galaxies
A matrix method is formulated in a Lagrangian representation for the solution
of the characteristic value problem governing modes of oscillation and
instability in a collisionless stellar system. The underlying perturbation
equations govern the Lagrangian displacement of a star in the six-dimensional
phase space. This matrix method has a basis in a variational principle. The
method is developed in detail for radial oscillations of a spherical system.
The basis vectors required for the representation of the Lagrangian
displacement in this case are derived from solutions of the Lagrangian
perturbation equations for radial perturbations in a homogeneous sphere. The
basis vectors are made divergence free in the six-dimensional phase space in
accordance with the requirement of Liouville's theorem that the flow of the
system in the phase space must be incompressible. The basis vectors are made
orthogonal with respect to a properly chosen set of adjoint vectors with the
aid of a Gram-Schmidt procedure. Some basis vectors are null vectors in the
sense that their inner products with their own adjoint vectors vanish. The
characteristic frequencies of the lowest radial modes are calculated in several
approximations for members of a family of spherical models which span a wide
range of central concentrations. The present formulation of the matrix method
can be generalized for nonradial modes in spherical systems and for modes in
axisymmetric systems.Comment: 30 pages, 11 figures, submitted to the Monthly Notices of the Royal
Astronomical Societ
Characterising the Gravitational Instability in Cooling Accretion Discs
We perform numerical analyses of the structure induced by gravitational
instabilities in cooling gaseous accretion discs. For low enough cooling rates
a quasi-steady configuration is reached, with the instability saturating at a
finite amplitude in a marginally stable disc. We find that the saturation
amplitude scales with the inverse square root of the cooling parameter beta =
t_cool / t_dyn, which indicates that the heating rate induced by the
instability is proportional to the energy density of the induced density waves.
We find that at saturation the energy dissipated per dynamical time by weak
shocks due is of the order of 20 per cent of the wave energy. From Fourier
analysis of the disc structure we find that while the azimuthal wavenumber is
roughly constant with radius, the mean radial wavenumber increases with radius,
with the dominant mode corresponding to the locally most unstable wavelength.
We demonstrate that the density waves excited in relatively low mass discs are
always close to co-rotation, deviating from it by approximately 10 per cent.
This can be understood in terms of the flow Doppler-shifted phase Mach number
-- the pattern speed self-adjusts so that the flow into spiral arms is always
sonic. This has profound effects on the degree to which transport through
self-gravity can be modelled as a viscous process. Our results thus provide (a)
a detailed description of how the self-regulation mechanism is established for
low cooling rates, (b) a clarification of the conditions required for
describing the transport induced by self-gravity through an effective
viscosity, (c) an estimate of the maximum amplitude of the density perturbation
before fragmentation occurs, and (d) a simple recipe to estimate the density
perturbation in different thermal regimes.Comment: 16 pages, 22 figures. Accepted for publication in MNRAS 11 November
200
Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation
Age-related skeletal muscle sarcopenia is linked with increases in falls, fractures, and death and therefore has important socioeconomic consequences. The molecular mechanisms controlling age-related muscle loss in humans are not well understood, but are likely to involve multiple signaling pathways. This study investigated the regulation of several genes and proteins involved in the activation of key signaling pathways promoting muscle hypertrophy, including GH/STAT5, IGF-1/Akt/GSK-3β/4E-BP1, and muscle atrophy, including TNFα/SOCS-3 and Akt/FKHR/atrogene, in muscle biopsies from 13 young (20 ± 0.2 years) and 16 older (70 ± 0.3 years) males. In the older males compared to the young subjects, muscle fiber cross-sectional area was reduced by 40–45% in the type II muscle fibers. TNFα and SOCS-3 were increased by 2.8 and 1.5 fold, respectively. Growth hormone receptor protein (GHR) and IGF-1 mRNA were decreased by 45%. Total Akt, but not phosphorylated Akt, was increased by 2.5 fold, which corresponded to a 30% reduction in the efficiency of Akt phosphorylation in the older subjects. Phosphorylated and total GSK-3β were increased by 1.5 and 1.8 fold, respectively, while 4E-BP1 levels were not changed. Nuclear FKHR and FKHRL1 were decreased by 73 and 50%, respectively, with no changes in their atrophy target genes, atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated by 2 and 1.4 fold. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signaling proteins such as GHR, IGF-1, and Akt. TNFα, SOCS-3, and myostatin are potential candidates influencing this anabolic perturbation.<br /