24 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Magnetic resonance imaging of cholangiocarcinoma

    No full text
    Preoperative imaging with MRI/MRA/MRCP is an accurate non-invasive method for staging cholangiocarcinoma, and determining resectability. It provides information regarding tumor size, extent of bile duct involvement, vascular patency, extrahepatic extension, nodal or distant metastases, and the presence of lobar atrophy. MRCP is better for demonstrating bile ducts distal to the stricture, although with ERCP, therapeutic intervention such as stent placement and biopsy can be performed

    Tales of diversity: Genomic and morphological characteristics of forty-six <i>Arthrobacter</i> phages

    No full text
    <div><p>The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single <i>Arthrobacter</i> sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45–68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these <i>Arthrobacter</i> phages are primarily lytic, and only the singleton Galaxy is likely temperate.</p></div

    Genome organization of <i>Arthrobacter</i> phage Laroye, Cluster AL.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p

    Genome organization of <i>Arthrobacter</i> phage Gordon, Cluster AU.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p

    Genome organization of <i>Arthrobacter</i> phage Maggie, Cluster AN.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p

    Genome organization of <i>Arthrobacter</i> phage Jawnski, Cluster AO.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p

    Nucleotide sequence comparison of <i>Arthrobacter</i> phages.

    No full text
    <p>Dot Plot of <i>Arthrobacter</i> phage genomes displayed using Gepard [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.ref035" target="_blank">35</a>]. Individual genome sequences were concatenated into a single file arranged such that related genomes were adjacent to each other. The assignment of clusters is shown along both the left and bottom.</p

    Splitstree representation of <i>Arthrobacter</i> phages and average nucleotide comparisons of Cluster AO <i>Arthrobacter</i> phages.

    No full text
    <p>All <i>Arthrobacter</i> phage predicted proteins were assorted into 1052 phams according to shared amino acid sequence similarities. Each genome was then assigned a value reflecting the presence or absence of a pham member, and the genomes were compared and displayed using Splitstree [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.ref036" target="_blank">36</a>]. Cluster and subcluster assignments derived from the dot plot and ANI analyses are annotated. The scale bar indicates 0.001 substitutions/site.</p
    corecore