1,891 research outputs found
Orbital magnetoelectric coupling at finite electric field
We extend the band theory of linear orbital magnetoelectric coupling to treat
crystals under finite electric fields. Previous work established that the
orbital magnetoelectric response of a generic insulator at zero field comprises
three contributions that were denoted as local circulation, itinerant
circulation, and Chern-Simons. We find that the expression for each of them is
modified by the presence of a dc electric field. Remarkably, the sum of the
three correction terms vanishes, so that the total coupling is still given by
the same formula as at zero field. This conclusion is confirmed by numerical
tests on a tight-binding model, for which we calculate the field-induced change
in the linear magnetoelectric coefficient.Comment: 4 pages, 2 figure
Wannier-based calculation of the orbital magnetization in crystals
We present a first-principles scheme that allows the orbital magnetization of
a magnetic crystal to be evaluated accurately and efficiently even in the
presence of complex Fermi surfaces. Starting from an initial
electronic-structure calculation with a coarse ab initio k-point mesh,
maximally localized Wannier functions are constructed and used to interpolate
the necessary k-space quantities on a fine mesh, in parallel to a
previously-developed formalism for the anomalous Hall conductivity [X.Wang, J.
Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B 74, 195118 (2006)]. We
formulate our new approach in a manifestly gauge-invariant manner, expressing
the orbital magnetization in terms of traces over matrices in Wannier space.
Since only a few (e.g., of the order of 20) Wannier functions are typically
needed to describe the occupied and partially occupied bands, these Wannier
matrices are small, which makes the interpolation itself very efficient. The
method has been used to calculate the orbital magnetization of bcc Fe, hcp Co,
and fcc Ni. Unlike an approximate calculation based on integrating orbital
currents inside atomic spheres, our results nicely reproduce the experimentally
measured ordering of the orbital magnetization in these three materials.Comment: 13 pages, 3 figures, 4 table
Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals
We derive a multi-band formulation of the orbital magnetization in a normal
periodic insulator (i.e., one in which the Chern invariant, or in 2d the Chern
number, vanishes). Following the approach used recently to develop the
single-band formalism [T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,
Phys. Rev. Lett. {\bf 95}, 137205 (2005)], we work in the Wannier
representation and find that the magnetization is comprised of two
contributions, an obvious one associated with the internal circulation of
bulk-like Wannier functions in the interior and an unexpected one arising from
net currents carried by Wannier functions near the surface. Unlike the
single-band case, where each of these contributions is separately
gauge-invariant, in the multi-band formulation only the \emph{sum} of both
terms is gauge-invariant. Our final expression for the orbital magnetization
can be rewritten as a bulk property in terms of Bloch functions, making it
simple to implement in modern code packages. The reciprocal-space expression is
evaluated for 2d model systems and the results are verified by comparing to the
magnetization computed for finite samples cut from the bulk. Finally, while our
formal proof is limited to normal insulators, we also present a heuristic
extension to Chern insulators (having nonzero Chern invariant) and to metals.
The validity of this extension is again tested by comparing to the
magnetization of finite samples cut from the bulk for 2d model systems. We find
excellent agreement, thus providing strong empirical evidence in favor of the
validity of the heuristic formula.Comment: 14 pages, 8 figures. Fixed a typo in appendix
Orbital magnetization in periodic insulators
Working in the Wannier representation, we derive an expression for the
orbital magnetization of a periodic insulator. The magnetization is shown to be
comprised of two contributions, an obvious one associated with the internal
circulation of bulk-like Wannier functions in the interior, and an unexpected
one arising from net currents carried by Wannier functions near the surface.
Each contribution can be expressed as a bulk property in terms of Bloch
functions in a gauge-invariant way. Our expression is verified by comparing
numerical tight-binding calculations for finite and periodic samples.Comment: submitted to PRL; signs corrected in Eqs. (11), (12), (19), and (20
Variability of reflectance measurements with sensor altitude and canopy type
Data were acquired on canopies of mature corn planted in 76 cm rows, mature soybeans planted in 96 cm rows with 71 percent soil cover, and mature soybeans planed in 76 cm rows with 100 percent soil cover. A LANDSAT band radiometer with a 15 degree field of view was used at ten altitudes ranging from 0.2 m to 10 m above the canopy. At each altitude, measurements were taken at 15 cm intervals also a 2.0 m transect perpendicular to the crop row direction. Reflectance data were plotted as a function of altitude and horizontal position to verify that the variance of measurements at low altitudes was attributable to row effects which disappear at higher altitudes where the sensor integrate across several rows. The coefficient of variation of reflectance decreased exponentially as the sensor was elevated. Systematic sampling (at odd multiples of 0.5 times the row spacing interval) required fewer measurements than simple random sampling over row crop canopies
First principles based atomistic modeling of phase stability in PMN-xPT
We have performed molecular dynamics simulations using a shell model
potential developed by fitting first principles results to describe the
behavior of the relaxor-ferroelectric (1-x)PbMg1/3Nb2/3O3-xPbTiO3 (PMN-xPT) as
function of concentration and temperature, using site occupancies within the
random site model. In our simulations, PMN is cubic at all temperatures and
behaves as a polar glass. As a small amount of Ti is added, a weak polar state
develops, but structural disorder dominates, and the symmetry is rhombohedral.
As more Ti is added the ground state is clearly polar and the system is
ferroelectric, but with easy rotation of the polarization direction. In the
high Ti content region, the solid solution adopts ferroelectric behavior
similar to PT, with tetragonal symmetry. The ground state sequence with
increasing Ti content is R-MB-O-MC-T. The high temperature phase is cubic at
all compositions. Our simulations give the slope of the morphotropic phase
boundaries, crucial for high temperature applications. We find that the phase
diagram PMN-xPT can be understood within the random site model.Comment: 27 pages, 9 figure
Jahn-Teller Distortion and Ferromagnetism in the Dilute Magnetic Semiconductors GaN:Mn
Using first-principles total-energy methods, we investigate Jahn-Teller
distortions in III-V dilute magnetic semiconductors, GaAs:Mn and GaN:Mn in the
cubic zinc blende structure. The results for an isolated Mn impurity on a Ga
site show that there is no appreciable effect in GaAs, whereas, in GaN there is
a Jahn-Teller effect in which the symmetry around the impurity changes from
T to D or to C. The large effect in GaN occurs because of
the localized d character, which is further enhanced by the distortion. The
lower symmetry should be detectable experimentally in cubic GaN with low Mn
concentration, and should be affected by charge compensation (reductions of
holes and conversion of Mn ions to d with no Jahn-Teller effect).
Jahn-Teller effect is greatly reduced because the symmetry at each Mn site is
lowered due to the Mn-Mn interaction. The tendency toward ferromagnetism is
found to be stronger in GaN:Mn than in GaAs:Mn and to be only slightly reduced
by charge compensation.Comment: 6 pages, 3 figure
First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys
We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x
(BS-PT) alloys recently proposed by Eitel et al. as promising materials for
piezoelectric actuator applications. We show that (i) BS-PT displays very large
structural distortions and polarizations at the morphotropic phase boundary
(MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the
ferroelectric and piezoelectric properties of BS-PT are dominated by the onset
of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is
enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses
of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as
far as the computed values of the piezoelectric coefficient d_15 are concerned.
While our results are generally consistent with experiment, they also suggest
that certain intrinsic properties of BS-PT may be even better than has been
indicated by experiments to date. We also discuss results for PZT that
demonstrate the prominent role played by Pb displacements in its piezoelectric
properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm
First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3
We carry out a completely first-principles study of the ferroelectric phase
transitions in BaTiO. Our approach takes advantage of two features of these
transitions: the structural changes are small, and only low-energy distortions
are important. Based on these observations, we make systematically improvable
approximations which enable the parameterization of the complicated energy
surface. The parameters are determined from first-principles total-energy
calculations using ultra-soft pseudopotentials and a preconditioned
conjugate-gradient scheme. The resulting effective Hamiltonian is then solved
by Monte Carlo simulation. The calculated phase sequence, transition
temperatures, latent heats, and spontaneous polarizations are all in good
agreement with experiment. We find the transitions to be intermediate between
order-disorder and displacive character. We find all three phase transitions to
be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure
- …
