We extend the band theory of linear orbital magnetoelectric coupling to treat
crystals under finite electric fields. Previous work established that the
orbital magnetoelectric response of a generic insulator at zero field comprises
three contributions that were denoted as local circulation, itinerant
circulation, and Chern-Simons. We find that the expression for each of them is
modified by the presence of a dc electric field. Remarkably, the sum of the
three correction terms vanishes, so that the total coupling is still given by
the same formula as at zero field. This conclusion is confirmed by numerical
tests on a tight-binding model, for which we calculate the field-induced change
in the linear magnetoelectric coefficient.Comment: 4 pages, 2 figure