434 research outputs found

    Oil elite networks in a transforming global oil market

    Get PDF
    This article analyses oil elite formation in light of the wider transformation that is taking place in the global oil order due to the rise of powers from the Global South, including Russia: in particular, the expansion and integration of the state-owned oil companies into the global oil market. This is done by analysing the networks that the directors of the world's largest oil companies create through their affiliations with a) other corporations, b) policy planning bodies and c) with the state. The most important finding is that the increased cooperation between the Western private oil companies and the non-Western state-owned oil companies has not yet translated into increased integration between their respective elite networks. It is argued that this indicates we are witnessing a transition towards a more multi-polar global oil order that increasingly needs to take into account the rising powers of the Global South. © The Author(s) 2012

    Pharmacological Modulation of Dopamine Receptor D2-Mediated Transmission Alters the Metabolic Phenotype of Diet Induced Obese and Diet Resistant C57Bl6 Mice

    Get PDF
    High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. Compared to Diet Resistant (DR) rodents, Diet Induced Obese (DIO) rodents are insulin resistant and have a reduced dopamine receptor D2 (DRD2) mediated tone. We hypothesized that this differing dopaminergic tone contributes to the distinct metabolic profiles of these animals. C57Bl6 mice were classified as DIO or DR based on their weight gain during 10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 2 weeks. Compared to DR mice, the bodyweight of DIO mice was higher and their insulin sensitivity decreased. Haloperidol treatment reduced the voluntary activity and energy expenditure of DR mice and induced insulin resistance in these mice. Conversely, bromocriptine treatment tended to reduce bodyweight and voluntary activity, and reinforce insulin action in DIO mice. These results show that DRD2 activation partly redirects high fat diet induced metabolic anomalies in obesity-prone mice. Conversely, blocking DRD2 induces an adverse metabolic profile in mice that are inherently resistant to the deleterious effects of high fat food. This suggests that dopaminergic neurotransmission is involved in the control of metabolic phenotype

    Enhanced Lacto-Tri-Peptide Bio-Availability by Co-Ingestion of Macronutrients

    Get PDF
    Some food-derived peptides possess bioactive properties, and may affect health positively. For example, the C-terminal lacto-tri-peptides Ile-Pro-Pro (IPP), Leu-Pro-Pro (LPP) and Val-Pro-Pro (VPP) (together named here XPP) are described to lower blood pressure. The bioactivity depends on their availability at the site of action. Quantitative trans-organ availability/kinetic measurements will provide more insight in C-terminal tri-peptides behavior in the body. We hypothesize that the composition of the meal will modify their systemic availability. We studied trans-organ XPP fluxes in catheterized pigs (25 kg; n=10) to determine systemic and portal availability, as well as renal and hepatic uptake of a water-based single dose of synthetic XPP and a XPP containing protein matrix (casein hydrolyte, CasH). In a second experiment (n=10), we compared the CasH-containing protein matrix with a CasH-containing meal matrix and the modifying effects of macronutrients in a meal on the availability (high carbohydrates, low quality protein, high fat, and fiber). Portal availability of synthetic XPP was 0.08 ± 0.01% of intake and increased when a protein matrix was present (respectively 3.1, 1.8 and 83 times for IPP, LPP and VPP). Difference between individual XPP was probably due to release from longer peptides. CasH prolonged portal bioavailability with 18 min (absorption half-life, synthetic XPP: 15 ± 2 min, CasH: 33 ± 3 min, p<0.0001) and increased systemic elimination with 20 min (synthetic XPP: 12 ± 2 min; CasH: 32 ± 3 min, p<0.0001). Subsequent renal and hepatic uptake is about 75% of the portal release. A meal containing CasH, increased portal 1.8 and systemic bioavailability 1.2 times. Low protein quality and fiber increased XPP systemic bioavailability further (respectively 1.5 and 1.4 times). We conclude that the amount and quality of the protein, and the presence of fiber in a meal, are the main factors that increase the systemic bioavailability of food-derived XPP

    Commodification and ‘the commons’: the politics of privatising public water in Greece and Portugal during the Eurozone Crisis

    Get PDF
    In response to the Eurozone crisis, austerity and restructuring has been imposed on the European Union’s (EU) peripheral member states in order to receive financial bailout loans. In addition to cuts in funding of essential public services, cuts in public sector employment and further liberalisation of labour markets, this has also included pressure towards the privatisation of state assets. And yet, workers have not simply accepted these restructuring pressures. They have organised and fought back against austerity and enforced privatisation. Based on a historical materialist perspective and following a strategy of incorporated comparison, in this paper we will comparatively assess the struggles against enforced water privatisation in Greece and Portugal set against the background of the structuring conditions surrounding the Eurozone crisis

    Integration and isolation in the global petrochemical industry: A multi-scalar corporate network analysis

    Get PDF
    The global petrochemical industry has long been characterized by stable patterns of Western corporate and geographic leadership, but since the early 2000s, the global playing field has changed significantly. China has overtaken the United States and Europe as the world’s largest petrochemical producer, and other emerging economies have emerged as global petrochemical players. Combining insights from scholarship on global corporate elites, world city networks, and relational economic geography, this article examines patterns in the corporate networks of leading petrochemical corporations. The research is based on a multi-scalar corporate network analysis, applying social network analysis to identify board interlocks, joint venture interlocks, and spatial interlocks between corporations. Through analyzing corporate networks across multiple scales, the research reveals patterns of both integration and isolation within the petrochemical industry. Isolation is evident in disconnected regional corporate elite networks, where the established North Atlantic corporate elite is interconnected through board interlocks, while corporate networks in Asia and other emerging economies remain disconnected. However, high levels of integration within the industry are also evident in an interconnected international company system formed through joint venture collaborations, and in overlapping subsidiary networks centered on petrochemical hubs around the world. The article argues that the results demonstrate a combination of resilience and change, or path dependence and contingency, in patterns of corporate power and collaboration. Western company networks still form the social and spatial backbone of the industry, but these have been challenged by emerging strategic centers and isolated elite networks in other parts of the world. This paper contributes to debates on industrial corporate elites, multiple globalizations, and the multipolar global economy

    Characterization of anticoagulant heparinoids by immunoprofiling

    Get PDF
    Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and–when additional saccharides are present–inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics
    corecore