18 research outputs found

    Optical Properties of Layered Superconductors near the Josephson Plasma Resonance

    Full text link
    We study the optical properties of crystals with spatial dispersion and show that the usual Fresnel approach becomes invalid near frequencies where the group velocity of the wave packets inside the crystal vanishes. Near these special frequencies the reflectivity depends on the atomic structure of the crystal provided that disorder and dissipation are very low. This is demonstrated explicitly by a detailed study of layered superconductors with identical or two different alternating junctions in the frequency range near the Josephson plasma resonance. Accounting for both inductive and charge coupling of the intrinsic junctions, we show that multiple modes are excited inside the crystal by the incident light, determine their relative amplitude by the microscopic calculation of the additional boundary conditions and finally obtain the reflectivity. Spatial dispersion also provides a novel method to stop light pulses, which has possible applications for quantum information processing and the artificial creation of event horizons in a solid.Comment: 25 pages, 20 figures, submitted to Phys. Rev.

    Numerical Solutions of ideal two-fluid equations very closed to the event horizon of Schwarzschild black hole

    Full text link
    The 3+1 formalism of Thorne, Price and Macdonald has been used to derive the linear two-fluid equations describing transverse and longitudinal waves propagating in the two-fluid ideal collisionless plasmas surrounding a Schwarzschild black hole. The plasma is assumed to be falling in radial direction toward the event horizon. The relativistic two-fluid equations have been reformulate, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon. Here a WKB approximation is used to derive the local dispersion relation for these waves and solved numerically for the wave number k.Comment: 16 pages, 15 figures. arXiv admin note: text overlap with arXiv:0902.3766, arXiv:0807.459

    Quantitative comparison of single- and two-particle properties in the cuprates

    Get PDF
    We explore the strong variations of the electronic properties of copper-oxygen compounds across the doping phase diagram in a quantitative way. To this end we calculate the electronic Raman response on the basis of results from angle-resolved photoemission spectroscopy (ARPES). In the limits of our approximations we find agreement on the overdoped side and pronounced discrepancies at lower doping. In contrast to the successful approach for the transport properties at low energies, the Raman and the ARPES data cannot be reconciled by adding angle-dependent momentum scattering. We discuss possible routes towards an explanation of the suppression of spectral weight close to the (π,0)(\pi,0) points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure

    A Theory for the High-T_c Cuprates: Anomalous Normal-State and Spectroscopic Properties, Phase Diagram, and Pairing

    Full text link
    A theory of highly correlated layered superconducting materials isapplied for the cuprates. Differently from an independent-electron approximation, their low-energy excitations are approached in terms of auxiliary particles representing combinations of atomic-like electron configurations, where the introduction of a Lagrange Bose field enables treating them as bosons or fermions. The energy spectrum of this field accounts for the tendency of hole-doped cuprates to form stripe-like inhomogeneities. Consequently, it induces a different analytical behavior for auxiliary particles corresponding to "antinodal" and "nodal" electrons, enabling the existence of different pairing temperatures at T^* and T_c. This theory correctly describes the observed phase diagram of the cuprates, including the non-Fermi-liquid to FL crossover in the normal state, the existence of Fermi arcs below T^* and of a "marginal-FL" critical behavior above it. The qualitative anomalous behavior of numerous physical quantities is accounted for, including kink- and waterfall-like spectral features, the drop in the scattering rates below T^* and more radically below T_c, and an effective increase in the density of carriers with T and \omega, reflected in transport, optical and other properties. Also is explained the correspondence between T_c, the resonance-mode energy, and the "nodal gap".Comment: 28 pages, 7 figure

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    Structural and biological evaluation of some loloatin C analogues

    No full text
    Loloatin C is a cyclic cationic antimicrobial peptide which is active against Gram positive as well as certain Gram negative bacteria. Unfortunately, it is equally potent against human erythrocytes. To probe the structure-activity relationship of this promising antibiotic peptide, amino acid substitution and/or incorporation of a constraint sugar amino acid dipeptide isoster has been applied. Six new derivatives have been synthesized using SPPS and their solution structure investigated using NMR studies. Finally, the antimicrobial and the hemolytic activities have been determined. © 2009 Elsevier Ltd. All rights reserved

    Synthesis and evaluation of strand and turn modified ring-extended gramicidin S derivatives

    No full text
    In this paper, we describe the crystal structure of previously reported ring-extended gramicidin S (GS) derivative 2 (GS14K4), containing a D-amino acid residue in one of the beta-strand regions. This structure is in agreement with a previously reported modeling study of the same molecule. The polar side chain of the additional D-amino acid residue is positioned at the same face of the molecule as the hydrophobic side chains, and we believe that because of this compound 2 is considerably less hydrophobic than extended GS derivatives in which the strand regions are exclusively composed of L-amino acids. Using this backbone structure as our benchmark we prepared a small series of ring-extended GS analogues featuring sugar amino acid dipeptide isosteres of varied hydrophobicity at the turn region. We show that via this approach hydrophobicity of extended GS analogues can be tuned without affecting the secondary structure (as observed from NMR and CD spectra). Biological evaluation reveals that hydrophobicity correlates to cell toxicity, but still bacteriolysis is induced with GS analogues that are too hydrophilic to efficiently lyse human red blood cells. (C) 2011 Elsevier Ltd. All rights reserved.Immunogenetics and cellular immunology of bacterial infectious disease
    corecore