602 research outputs found
Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs
Despite the fact that solid dispersions are gaining momentum, the number of polymers that have been used as a carrier during the past 50 years is rather limited. Recently, the poly(2-alkyl-2-oxazoline) (PAOx) polymer class profiled itself as a versatile platform for a wide variety of applications in drug delivery, including their use as amorphous solid dispersion (ASD) carrier. The aim of this study was to investigate the potential of poly(2-ethyl-2-oxazoline) (PEtOx) by applying a benchmark approach with well-known, commercially available carriers (ie. polyvinylpyrrolidone (PVP) K30, poly(vinylpyrrolidone-co-vinyl acetate) (PVP-VA) 64 and hydro-xypropylmethylcellulose (HPMC)). For this purpose, itraconazole (ITC) and fenofibrate (FFB) were selected as poorly water-soluble model drugs. The four polymers were compared by establishing their supersaturation maintaining potential and by investigating their capability as carrier for ASDs with high drug loadings. Spray drying, as well as hot melt extrusion and cryo-milling were implemented as ASD manufacturing technologies for comparative evaluation. For each manufacturing technique, the formulations with the highest possible drug loadings were tested with respect to in vitro drug release kinetics. This study indicates that PEtOx is able to maintain supersaturation of the drugs to a similar extent as the commercially available polymers and that ASDs with comparable drug loadings can be manufactured. The results of the in vitro dissolution tests reveal that high drug release can be obtained for PEtOx formulations. Overall, proof-of-concept is provided for the potential of PEtOx for drug formulation purposes
Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate
With a view to the application in oral drug delivery formulations, the possibility to form interpolyelectrolyte complexes (IPEC) of Eudragit E 100 (EE) with sodium alginate (AL) was investigated, employing turbidimetry, apparent viscosity measurements, FT-IR and elementary analysis. The interaction or binding ratio of a unit molecule of AL with EE was largely affected by the pH value of the media, showing a change from 1.5:1 to 1:1.25 (0.66 < Z < 1.25) with increase in pH value from 2.5 to 6.0. Based on the results of elementary analysis and FT-IR, the interaction ratio of each component in the solid complexes was very close to that observed in turbidity and apparent viscosity measurements thus proving that the synthesized products actually can be considered as IPEC. © 2005 Elsevier B.V. All rights reserved
Controlling the release of indomethacin from glass solutions layered with a rate controlling membrane using fluid-bed processing. Part 1: Surface and cross-sectional chemical analysis
Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug–polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin–polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer remains amorphous after coating of the rate controlling membrane, whether formed from an ethanol solution or an aqueous dispersion
Recommended from our members
Advancing predictions of protein stability in the solid state.
The β-relaxation associated with the sub-glass transition temperature (Tg,β) is attributed to fast, localised molecular motions which can occur below the primary glass transition temperature (Tg,α). Consistent with Tg,β being observed well-below storage temperatures, the β-relaxation associated motions have been hypothesised to influence protein stability in the solid state and could thus impact the quality of e.g. protein powders for inhalation or reconstitution and injection. Why then do distinct solid state protein formulations with similar aggregation profiles after drying and immediate reconstitution, display different profiles when reconstituted following prolonged storage? Is the value of Tg,β, associated with the β-relaxation process of the system, a reliable parameter for characterising the behaviour of proteins in the solid state? Bearing this in mind, in this work we further explore the different relaxation dynamics of glassy solid state monoclonal antibody formulations using terahertz time-domain spectroscopy and dynamical mechanical analysis. By conducting a 52 week stability study on a series of multi-component spray-dried formulations, an approach for characterising and analysing the solid state dynamics and how these relate to protein stability is outlined.EPSR
Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100
With a view to the application in oral controlled drug delivery systems, the formation of interpolyelectrolyte complexes (IPEC) between Eudragit E100 (EE) and Eudragit L100 (EL) was investigated, using turbidimetry, solution viscosity measurements and elementary analysis. The structure of the synthesized IPEC was investigated by using FT-IR spectroscopy. The binding ratio of a unit molecule of EL with EE was found to be approximately 1:1 in pH 6.0. Based on the results of elementary analysis, and FT-IR, the binding ratio of each component in the solid complexes was very close to that observed in turbidity and viscosity measurements and indicate that the synthesized products can be considered as IPEC. Due to the structure of the IPEC, two maxima were observed in the swelling behaviour as a function of pH. The release of the model drug ibuprofen was significantly retarded from tablets made up of the IPEC. © 2004 Elsevier B.V. All rights reserved
Drug release modification by interpolymer interaction between countercharged types of Eudragit® RL 30D and FS 30D in double-layer films
Interpolymer interactions between the countercharged methacrylate copolymers Eudragit® RL 30D (polycation) and Eudragit® FS 30D (polyanion), were investigated in conditions mimicking the gastrointestinal environment. The formation of inter-macromolecular ionic bonds between Eudragit® RL 30D and Eudragit® FS 30D was investigated using FT-IR spectroscopy and modulated DSC. The FT-IR spectra of the tested polymeric matrices are characterized by visible changes in the observed IR region indicating the interaction between chains of two oppositely charged copolymers. A new band at 1570 cm-1 appeared which was assigned to the absorption of the carboxylate groups that form the ionic bonds with the quaternary ammonium groups. Moreover, while increasing the pH values from pH 5.8 to 7.4, a decrease of the intensity of the band at 960 cm-1 (quaternary ammonium group vibration) was observed. All binary mixtures were characterized by the presence of only one and narrow Tg, pointing to sample homogeneity, because of the compatibility of components. As a result of electrostatic interaction between the copolymer chains during swelling, the resulting Tg is decreased significantly and was dependent on the quantity of copolymers present in the structure of polycomplexes formed. Overall, the interaction between countercharged copolymers during passage in gastrointestinal tract can strongly modify the release profile of the model drug diclofenac sodium. © 2012 Elsevier B.V. All rights reserved
Interpolyelectrolyte complexes of Eudragit® e PO with sodium alginate as potential carriers for colonic drug delivery: Monitoring of structural transformation and composition changes during swellability and release evaluating
Background: With a view to the application in oral colon drug delivery systems, swelling and release behavior of synthesized interpolyelectrolyte complexes (IPEC) between sodium alginate and Eudragit® EPO were investigated. Method: The microenvironmental changes in IPECs structure as a function of pH during swellability testing were investigated using FT-IR spectroscopy and elementary analysis. Results: All samples of IPECs (Z 0.661.25) during swelling were transformed to a similar structure with approximately the same composition. The release of the model drug diclofenac sodium was significantly delayed from matrices made up of the IPECs and independent from the composition of polycomplexes. Conclusion: According to the obtained results, these IPECs can be considered to have potential in colonic drug delivery as combined pH- and time-dependent systems. © 2009 Informa UK, Ltd
Combination of (M)DSC and surface analysis to study the phase behaviour and drug distribution of ternary solid dispersions
Purpose: Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix.
Methods: MDSC was combined with complementary surface analysis techniques, specifically time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Three spray-dried model formulations with varying API/PLGA/PVP ratios were analyzed.
Results: The distribution of the API in the ternary solid dispersions depended on formulation parameters. The extent of API surface coverage and therefore the distribution of the API over both polymeric phases differed significantly for the three formulations.
Conclusions: Combining (M)DSC and surface analysis rendered additional insights in the composition of mixed phases in complex systems, like ternary solid dispersions
Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study
The short-chain fatty acids (SCFAs), acetate, propionate and butyrate, are bacterial metabolites that mediate the interaction between the diet, the microbiota and the host. In the present study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13C-SCFAs 13C-glucose, 13C-cholesterol and 13C-fatty acids were measured. The butyrate-producing capacity of the intestinal microbiota was also quantified. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13CO2, whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFA production from 13C-labelled fibres in the human colon by measurement of 13C-labelled SCFA concentrations in blood
- …