358 research outputs found

    Lactobacillus rhamnosus GG and Saccharomyces cerevisiae boulardii exert synergistic antipathogenic activity in vitro against enterotoxigenic Escherichia coli

    Get PDF
    Short-term colonic in vitro batch incubations were performed to elucidate the possible synergistic effects of Lactobacillus rhamnosus GG (CNCM-I-4798) and Saccharomyces cerevisiae boulardii (CNCM-1-1079) (associated in Smebiocta/Smectaflora Protect (R)) on the colonic microbial fermentation process, as well as their antipathogenic activity against enterotoxigenic Escherichia coli (LMG2092) (ETEC). These incubations adequately simulate the native microbiota and environmental conditions of the proximal colon of both adult and toddler donors, including the colonic mucosal layer. Results indicated that both strains were capable of growing together without showing antagonistic effects. Co-cultivation of both strains resulted in increased butyrate (stimulated by L. rhamnosus GG), propionate (stimulated by S. boulardii), and ethanol (produced by S. boulardii) production compared to the control incubations, revealing the additive effect of both strains. After inoculation of ETEC under simulated dysbiotic conditions, a 40 and 46% reduction in the concentration of ETEC was observed upon addition of both strains during the experiments with the adult and toddler donor, respectively. Furthermore, ETEC toxin levels decreased upon S. boulardii inoculation, probably due to proteolytic activity of this strain, with a synergistic effect being observed upon co-cultivation of L. rhamnosus GG and S. boulardii resulting in a reduction of 57 and 46% for the adult and toddler donor, respectively. Altogether, the results suggest that both probiotics together may help microbiota functionality, in both adults and toddlers and under healthy or impaired conditions, which could be of great interest when the colonic microbiota is dysbiotic and therefore sensitive to pathogenic invasion such as during antibiotic treatment

    Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome

    Get PDF
    Accumulating evidence demonstrates the intimate association between human hosts and the gut microbiome. Starting at birth, the sterile gut of the newborn acquires a diverse spectrum of microbes, needed for immunological priming. However, current practices (caesarean sections, use of formula milk) deprive newborns from being exposed to this broad spectrum of microbes. Unnecessary use of antibiotics and excessive hygienic precautions (e.g. natural versus chlorinated drinking water) together with the Western diet further contribute to a decreased microbial diversity in the adult gut. This has been correlated with recurrent Clostridium difficile infection, inflammatory bowel diseases and obesity, among others. A healthy gut microbiome is thus characterized by a diverse network of metabolically interacting microbial members. In this context, we review several existing and novel approaches to manage the gut microbiome. First, prebiotic compounds should be re-defined in the sense that they should enhance the ecological biodiversity rather than stimulating single species. Recent studies highlight that structurally different polysaccharides require specific primary degraders but also enhance a similar network of secondary degraders that benefit from cross-feeding. A faecal transplantation is a second approach to restore biodiversity when the microbiota is severely dysbiosed, with promising results regarding C.difficile-associated disease and obesity-related metabolic syndromes. A final strategy is the introduction of key microbial network units, i.e. pre-organized microbial associations, which strengthen the overall microbial network of the gut microbiome that supports human health

    Yeast-Derived Formulations Are Differentially Fermented by the Canine and Feline Microbiome As Assessed in a Novel in Vitro Colonic Fermentation Model

    Get PDF
    The current study evaluated the effect of five yeast-derived formulations (T1-T5) on microbial metabolism and composition of the canine and feline gut microbiota using a novel in vitro colonic incubation approach. This novel in vitro model allowed for growth of the entire spectrum of dog- and cat-derived bacteria from the inoculum, thus offering an excellent platform to evaluate effects of nutritional interventions on the gut microbiota. Further, yeast-derived ingredients differentially increased production of acetate, propionate, butyrate, ammonium, and branched short-chain fatty acids, with T5 and T1 consistently stimulating propionate and butyrate, respectively. 16S-targeted Illumina sequencing coupled with flow cytometry provided unprecedented high-resolution quantitative insights in canine and feline microbiota modulation by yeast-derived ingredients, revealing that effects on propionate production were related to Prevotellaceae, Tannerellaceae, Bacteroidaceae, and Veillonellaceae members, while effects on butyrate production were related to Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Fusobacteriaceae. Overall, these findings strengthen the health-promoting potential of yeast-derived ingredients

    Neutrophils enhance early Trypanosoma brucei infection onset.

    Get PDF
    In this study, Trypanosoma brucei was naturally transmitted to mice through the bites of infected Glossina morsitans tsetse flies. Neutrophils were recruited rapidly to the bite site, whereas monocytes were attracted more gradually. Expression of inflammatory cytokines (il1b, il6), il10 and neutrophil chemokines (cxcl1, cxcl5) was transiently up-regulated at the site of parasite inoculation. Then, a second influx of neutrophils occurred that coincided with the previously described parasite retention and expansion in the ear dermis. Congenital and experimental neutropenia models, combined with bioluminescent imaging, indicate that neutrophils do not significantly contribute to dermal parasite control and elicit higher systemic parasitemia levels during the infection onset. Engulfment of parasites by neutrophils in the skin was rarely observed and was restricted to parasites with reduced motility/viability, whereas live parasites escaped phagocytosis. To our knowledge, this study represents the first description of a trypanosome infection promoting role of early innate immunological reactions following an infective tsetse fly bite. Our data indicate that the trypanosome is not hindered in its early development and benefits from the host innate responses with the neutrophils being important regulators of the early infection, as already demonstrated for the sand fly transmitted Leishmania parasite

    A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro

    Get PDF
    Poorly formulated probiotic supplements intended for oral administration often fail to protect bacteria from the challenges of human digestion, meaning bacteria do not reach the small intestine in a viable state. As a result, the ability of probiotics to influence the human gut microbiota has not been proven. Here we show how (i) considered formulation of an aqueous probiotic suspension can facilitate delivery of viable probiotic bacteria to the gut and (ii) quantitate the effect of colonisation and proliferation of specific probiotic species on the human gut microbiota, using an in-vitro gut model. Our data revealed immediate colonisation and growth of three probiotic species in the luminal and mucosal compartments of the proximal and distal colon, and growth of a fourth species in the luminal proximal colon, leading to higher proximal and distal colonic lactate concentrations. The lactate stimulated growth of lactate-consuming bacteria, altering the bacterial diversity of the microbiota and resulting in increased short-chain fatty acid production, especially butyrate. Additionally, an immunomodulatory effect of the probiotics was seen; production of anti-inflammatory cytokines (IL-6 and IL-10) was increased and production of inflammatory chemokines (MCP-1, CXCL 10 and IL-8.) was reduced. The results indicate that the probiotic species alone do not result in a clinical effect; rather, they facilitate modulation of the gut microbiota composition and metabolic activity thereby influencing the immune response

    Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation

    Get PDF
    Akkermansia muciniphila is a champion of mucin degradation in the human gastrointestinal tract. Here, we report the isolation of six novel strains from healthy human donors and their genomic, proteomic and physiological characterization in comparison to the type-strains A. muciniphila Muc(T) and A. glycaniphila Pyt(T). Complete genome sequencing revealed that, despite their large genomic similarity (>97.6%), the novel isolates clustered into two distinct subspecies of A. muciniphila: Amuc1, which includes the type-strain Muc(T), and AmucU, a cluster of unassigned strains that have not yet been well characterized. CRISPR analysis showed all strains to be unique and confirmed that single healthy subjects can carry more than one A. muciniphila strain. Mucin degradation pathways were strongly conserved amongst all isolates, illustrating the exemplary niche adaptation of A. muciniphila to the mucin interface. This was confirmed by analysis of the predicted glycoside hydrolase profiles and supported by comparing the proteomes of A. muciniphila strain H2, belonging to the AmucU cluster, to Muc(T) and A. glycaniphila Pyt(T) (including 610 and 727 proteins, respectively). While some intrinsic resistance was observed among the A. muciniphila straind, none of these seem to pose strain-specific risks in terms of their antibiotic resistance patterns nor a significant risk for the horizontal transfer of antibiotic resistance determinants, opening the way to apply the type-strain Muc(T) or these new A. muciniphila strains as next generation beneficial microbes.Peer reviewe

    High Prevalence of Drug Resistance in Animal Trypanosomes without a History of Drug Exposure

    Get PDF
    Trypanosomosis is responsible for the death of 3 million heads of cattle yearly, with 50 million animals at risk in sub-Saharan Africa. DA, a commonly used drug against the disease, was marketed decades ago. Drug resistance is reported in 21 African countries. A common argument about the origin of drug resistance is the selection by the drug of rare individuals that are naturally resistant and the propagation of those individuals in the population because of the competitive advantage they have when exposed to drug. When the drug pressure decreases, the wild-type individuals regain their supremacy. The principal objective of this study was thus to estimate the prevalence of trypanosomes resistant to DA in a population that was never exposed to the drug. Our results showing a high prevalence of drug resistance in environments free of any drug pressure is thought provoking and suggests that ceasing the use of DA will not allow for a return to a DA-sensitive population of trypanosomes. Drug resistance in animal trypanosomes thus present a pattern different from what is observed with Plasmodium sp. (causative agent of malaria) where a complete stoppage in the use of the chloroquine allows for a return to drug sensitivity

    Baseline survey of animal trypanosomosis in the region of the Boucle du Mouhoun, Burkina Faso

    Get PDF
    In view of gathering baseline information about the prevalence of animal trypanosomosis, the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) funded a cross sectional survey in the Region of the Boucle du Mouhoun which constitutes the Northern limit of the tsetse distribution in Burkina. This cross sectional study was carried out in 53 villages located in the 6 provinces of the region. A total of 2002 cattle, 1466 small ruminants and 481 donkeys were sampled. This survey showed that about 25% of the cattle had been treated with trypanocidal drugs within 3 months before the survey compared to 3% and 0.42% for the small ruminants and donkeys respectively. Parasitological prevalence in cattle was low: 0.77% (95% C.I. 0.30-1.95%). No goats and three donkeys were found infected with trypanosomes. Infections were mainly due to Trypanosoma vivax (75.0%) with cases of T. congolense (25.0%). In cattle, the serological prevalence of trypanosomosis, for the entire Region of the Boucle du Mouhoun, was 34.2% (95%C.I. 26.1-43.4%). For sheep, goats and donkeys, the prevalence were of 20.9% (95%C.I. 12.2-33.5%), 8.5% (95%C.I. 5.7-12.5%) and 5.8% (95%C.I. 3.9-8.6%) respectively.The age and distance to the river were the two main risk factors associated with seropositivity.PATTEC coordinating teamhttp://www.elsevier.com/locate/rvschb2013ab201

    Trypanosoma brucei Modifies the Tsetse Salivary Composition, Altering the Fly Feeding Behavior That Favors Parasite Transmission

    Get PDF
    Tsetse flies are the notorious transmitters of African trypanosomiasis, a disease caused by the Trypanosoma parasite that affects humans and livestock on the African continent. Metacyclic infection rates in natural tsetse populations with Trypanosoma brucei, including the two human-pathogenic subspecies, are very low, even in epidemic situations. Therefore, the infected fly/host contact frequency is a key determinant of the transmission dynamics. As an obligate blood feeder, tsetse flies rely on their complex salivary potion to inhibit host haemostatic reactions ensuring an efficient feeding. The results of this experimental study suggest that the parasite might promote its transmission through manipulation of the tsetse feeding behavior by modifying the saliva composition. Indeed, salivary gland Trypanosoma brucei-infected flies display a significantly prolonged feeding time, thereby enhancing the likelihood of infecting multiple hosts during the process of a single blood meal cycle. Comparison of the two major anti-haemostatic activities i.e. anti-platelet aggregation and anti-coagulation activity in these flies versus non-infected tsetse flies demonstrates a significant suppression of these activities as a result of the trypanosome-infection status. This effect was mainly related to the parasite-induced reduction in salivary gland gene transcription, resulting in a strong decrease in protein content and related biological activities. Additionally, the anti-thrombin activity and inhibition of thrombin-induced coagulation was even more severely hampered as a result of the trypanosome infection. Indeed, while naive tsetse saliva strongly inhibited human thrombin activity and thrombin-induced blood coagulation, saliva from T. brucei-infected flies showed a significantly enhanced thrombinase activity resulting in a far less potent anti-coagulation activity. These data clearly provide evidence for a trypanosome-mediated modification of the tsetse salivary composition that results in a drastically reduced anti-haemostatic potential and a hampered feeding performance which could lead to an increase of the vector/host contact and parasite transmission in field conditions
    corecore