415 research outputs found
Cellular regenerative therapy for acquired noncongenital musculoskeletal disorders
CITATION: Niesler, C. U. et al. 2019. Cellular regenerative therapy for acquired noncongenital musculoskeletal disorders. South African Medical Journal, 109(8b):58-63. doi:10.7196/SAMJ.2019.v109i8b.13860The original publication is available at http://www.samj.org.za/index.php/samj/indexENGLISH ABSTRACT: Stem cells have an inherent capacity to facilitate regeneration; this has led to unprecedented growth in their experimental use in various clinical settings, particularly in patients with diseases with few alternative treatment options. However, their approved clinical use has to date been restricted largely to haematological diseases and epidermal transplantation to treat severe burns. After thorough searching of two databases, this review illuminates the role of stem cell therapy for treatment of musculoskeletal diseases. Research suggests that successful application of stem cells as regenerative mediators is in all likelihood dependent on the ability of endogenous tissue-resident reparative mediators to respond to paracrine signals provided by the applied stem cells. Therefore, an understanding of how the pathological environment influences this process is crucial for the ultimate success of stem cell therapies. The current review presents both the progress and limitations of stem cells as regenerative mediators in the context of musculoskeletal disorders.DST/NRF South African Research Chair
Initiativehttp://www.samj.org.za/index.php/samj/article/view/12714Publisher’s versio
Monte Carlo simulation of virtual Compton scattering below pion threshold
This paper describes the Monte Carlo simulation developed specifically for
the VCS experiments below pion threshold that have been performed at MAMI and
JLab. This simulation generates events according to the (Bethe-Heitler + Born)
cross section behaviour and takes into account all relevant
resolution-deteriorating effects. It determines the `effective' solid angle for
the various experimental settings which are used for the precise determination
of photon electroproduction absolute cross section.Comment: 24 pages, 6 figures, to be published in Nuclear Instruments and
Methods in Physics Research, A One author adde
The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment
Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have
been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and
polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum
of the outgoing photon in the photon-proton center of mass frame. The
experiment has been performed with the high resolution spectrometers at the
Mainz Microtron MAMI. From the photon angular distributions, two structure
functions which are a linear combination of the generalized polarizabilities
have been determined for the first time.Comment: 4 pages, 3 figure
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector
The construction and use of a dual radiator Ring Imaging Cerenkov(RICH)
detector is described. This instrument was developed for the HERMES experiment
at DESY which emphasizes measurements of semi-inclusive deep-inelastic
scattering. It provides particle identification for pions, kaons, and protons
in the momentum range from 2 to 15 GeV, which is essential to these studies.
The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall
of silica aerogel tiles. The use of aerogel in a RICH detector has only
recently become possible with the development of clear, large homogeneous and
hydrophobic aerogel. A lightweight mirror was constructed using a newly
perfected technique to make resin-coated carbon-fiber surfaces of optical
quality. The photon detector consists of 1934 photomultiplier tubes for each
detector half, held in a soft steel matrix to provide shielding against the
residual field of the main spectrometer magnet.Comment: 25 pages, 23 figure
Measurement of the Beam-Recoil Polarization in Low-Energy Virtual Compton Scattering from the Proton
Double-polarization observables in the reaction have been measured at . The experiment
was performed at the spectrometer setup of the A1 Collaboration using the 855
MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil
proton polarimeter. From the double-polarization observables the structure
function is extracted for the first time, with the value , using the low-energy theorem
for Virtual Compton Sattering. This structure function provides a hitherto
unmeasured linear combination of the generalized polarizabilities of the
proton
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target
A measurement of the proton spin structure function g1p(x,Q^2) in
deep-inelastic scattering is presented. The data were taken with the 27.6 GeV
longitudinally polarised positron beam at HERA incident on a longitudinally
polarised pure hydrogen gas target internal to the storage ring. The kinematic
range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral
Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is
0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late
Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry
Spin-dependent lepton-nucleon scattering data have been used to investigate
the validity of the concept of quark-hadron duality for the spin asymmetry
. Longitudinally polarised positrons were scattered off a longitudinally
polarised hydrogen target for values of between 1.2 and 12 GeV and
values of between 1 and 4 GeV. The average double-spin asymmetry in
the nucleon resonance region is found to agree with that measured in
deep-inelastic scattering at the same values of the Bjorken scaling variable
. This finding implies that the description of in terms of quark
degrees of freedom is valid also in the nucleon resonance region for values of
above 1.6 GeV.Comment: 5 pages, 1 eps figure, table added, new references added, in print in
Phys. Rev. Let
Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target
Spin-polarised atomic hydrogen is used as a gaseous polarised proton target
in high energy and nuclear physics experiments operating with internal beams in
storage rings. When such beams are intense and bunched, this type of target can
be depolarised by a resonant interaction with the transient magnetic field
generated by the beam bunches. This effect has been studied with the HERA
positron beam in the HERMES experiment at DESY. Resonances have been observed
and a simple analytic model has been used to explain their shape and position.
Operating conditions for the experiment have been found where there is no
significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure
- …