21 research outputs found

    Generalized Fourier transforms arising from the enveloping algebras of sl(2) and osp(1|2)

    Full text link
    The Howe dual pair (sl(2),O(m)) allows the characterization of the classical Fourier transform (FT) on the space of rapidly decreasing functions as the exponential of a well-chosen element of sl(2) such that the Helmholtz relations are satisfied. In this paper we first investigate what happens when instead we consider exponentials of elements of the universal enveloping algebra of sl(2). This leads to a complete class of generalized Fourier transforms, that all satisfy properties similar to the classical FT. There is moreover a finite subset of transforms which very closely resemble the FT. We obtain operator exponential expressions for all these transforms by making extensive use of the theory of integer-valued polynomials. We also find a plane wave decomposition of their integral kernel and establish uncertainty principles. In important special cases we even obtain closed formulas for the integral kernels. In the second part of the paper, the same problem is considered for the dual pair (osp(1|2),Spin(m)), in the context of the Dirac operator. This connects our results with the Clifford-Fourier transform studied in previous work.Comment: Second version, changes in title, introduction and section

    Finite dimensional representations of Uq(C(n+1))U_q(C(n+1)) at arbitrary qq

    Get PDF
    A method is developed to construct irreducible representations(irreps) of the quantum supergroup Uq(C(n+1))U_q(C(n+1)) in a systematic fashion. It is shown that every finite dimensional irrep of this quantum supergroup at generic qq is a deformation of a finite dimensional irrep of its underlying Lie superalgebra C(n+1)C(n+1), and is essentially uniquely characterized by a highest weight. The character of the irrep is given. When qq is a root of unity, all irreps of Uq(C(n+1))U_q(C(n+1)) are finite dimensional; multiply atypical highest weight irreps and (semi)cyclic irreps also exist. As examples, all the highest weight and (semi)cyclic irreps of Uq(C(2))U_q(C(2)) are thoroughly studied.Comment: 21 page

    Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator

    Full text link
    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of jellium models, Woods-Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. In alkali metal clusters and noble metal clusters the 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), while in addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of several metal clusters. The Taylor expansions of angular momentum dependent potentials approximately producing the same spectrum as the 3-dimensional q-deformed harmonic oscillator are found to be similar to the Taylor expansions of the symmetrized Woods-Saxon and wine-bottle symmetrized Woods-Saxon potentials, which are known to provide successful fits of the Ekardt potentials.Comment: 23 pages including 7 table

    Structure and representations on the quantum supergroup

    Get PDF
    The structure and representations of the quantum supergroup OSP(2|2n) are studied systematically. The algebra of functions on the quantum supergroup, which specifies the quantum supergroup itself, is taken to be the superalgebra generated by the matrix elements of the vector representation of the quantized universal superalgebra U(osp(2|2n)). It is shown that the algebra of functions is dense in the full dual U(osp(2|2n))* of U(osp(2|2n)) and possesses a Hopf superalgebra structure. The left integral and right integral on the quantum supergroup are discussed. Induced representations are developed using the noncommutative geometry of quantum homogeneous supervector bundles, and a geometric realization of irreducible representations is obtained

    Unitarizable Representations of the Deformed Para-Bose Superalgebra Uq[osp(1/2)] at Roots of 1

    Full text link
    The unitarizable irreps of the deformed para-Bose superalgebra pBqpB_q, which is isomorphic to Uq[osp(1/2)]U_q[osp(1/2)], are classified at qq being root of 1. New finite-dimensional irreps of Uq[osp(1/2)]U_q[osp(1/2)] are found. Explicit expressions for the matrix elements are written down.Comment: 19 pages, PlainTe

    Coupling coefficients of SO(n) and integrals over triplets of Jacobi and Gegenbauer polynomials

    Full text link
    The expressions of the coupling coefficients (3j-symbols) for the most degenerate (symmetric) representations of the orthogonal groups SO(n) in a canonical basis (with SO(n) restricted to SO(n-1)) and different semicanonical or tree bases [with SO(n) restricted to SO(n'})\times SO(n''), n'+n''=n] are considered, respectively, in context of the integrals involving triplets of the Gegenbauer and the Jacobi polynomials. Since the directly derived triple-hypergeometric series do not reveal the apparent triangle conditions of the 3j-symbols, they are rearranged, using their relation with the semistretched isofactors of the second kind for the complementary chain Sp(4)\supset SU(2)\times SU(2) and analogy with the stretched 9j coefficients of SU(2), into formulae with more rich limits for summation intervals and obvious triangle conditions. The isofactors of class-one representations of the orthogonal groups or class-two representations of the unitary groups (and, of course, the related integrals involving triplets of the Gegenbauer and the Jacobi polynomials) turn into the double sums in the cases of the canonical SO(n)\supset SO(n-1) or U(n)\supset U(n-1) and semicanonical SO(n)\supset SO(n-2)\times SO(2) chains, as well as into the_4F_3(1) series under more specific conditions. Some ambiguities of the phase choice of the complementary group approach are adjusted, as well as the problems with alternating sign parameter of SO(2) representations in the SO(3)\supset SO(2) and SO(n)\supset SO(n-2)\times SO(2) chains.Comment: 26 pages, corrections of (3.6c) and (3.12); elementary proof of (3.2e) is adde

    Integrability, spin-chains and the AdS3/CFT2 correspondence

    Get PDF
    Building on arXiv:0912.1723, in this paper we investigate the AdS3/CFT2 correspondence using integrability techniques. We present an all-loop Bethe Ansatz (BA) for strings on AdS_3 x S^3 x S^3 x S^1, with symmetry D(2,1;alpha)^2, valid for all values of alpha. This construction relies on a novel, alpha-dependent generalisation of the Zhukovsky map. We investigate the weakly-coupled limit of this BA and of the all-loop BA for strings on AdS_3 x S^3 x T^4. We construct integrable short-range spin-chains and Hamiltonians that correspond to these weakly-coupled BAs. The spin-chains are alternating and homogenous, respectively. The alternating spin-chain can be regarded as giving some of the first hints about the unknown CFT2 dual to string theory on AdS_3 x S^3 x S^3 x S^1. We show that, in the alpha to 1 limit, the integrable structure of the D(2,1;alpha) model is non-singular and keeps track of not just massive but also massless modes. This provides a way of incorporating massless modes into the integrability machinery of the AdS3/CFT2 correspondence.Comment: LaTeX, 38 pages. v2: Corrected misprints in section 6.
    corecore