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Abstract

In a recent paper, Alǐsauskas deduced different triple sum expressions for the 9-j coef-
ficient of su(2) and suq(2). For a singly stretched 9-j coefficient, these reduce to different
double sum series. Using these distinct series, we deduce a set of new transformation
formulas for double hypergeometric series of Kampé de Fériet type and their basic ana-
logues. These transformation formulas are valid for rather general parameters of the
series, although a common feature is that all the series appearing here are terminating.
It is also shown that the transformation formulas deduced here generate a group of trans-
formation formulas, thus yielding an invariance group or symmetry group of particular
double series.

Running title : Transformations for double series.

PACS : 02.20.+b, 02.30.+g, 03.65.Fd.

I Introduction

The Wigner 9-j coefficients (or 9-j symbols) arise as recoupling coefficients in the coupling

(tensor product) of four irreducible representations of su(2), and play an important role in

the quantum theory of angular momentum [1, 2, 3]. Although the relation between recoupling

coefficients, such as the 3-j coefficient and the 6-j coefficient, and hypergeometric series or

(discrete) orthogonal polynomials of hypergeometric type is well understood [3, 4, 5, 6], the 9-j

coefficient remains somewhat a mystery in this respect. There are many known expressions

for the 9-j coefficient as a multiple hypergeometric series. The most compact formula is the
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so-called triple sum series, originally derived by Alǐsauskas and Jucys [7], and rederived in [8].

Whether a triple sum expression is really the best one can do for the 9-j coefficient, is not

known; specialists in the field still guess that a double sum series might exist [9].

The triple sum series of Alǐsauskas and Jucys was recognized as a special case [10, 5] of a

triple hypergeometric series defined by Srivastava [11]. It was used to speed up the numerical

computation of 9-j coefficients [10], and to derive certain summation and reduction formulas

for hypergeometric series by using particular classes of 9-j coefficients [12, 13, 14].

Alǐsauskas and Jucys’s triple sum series was recently rederived in two ways. In [15],

Rosengren deduced the triple sum series for 9-j coefficients (of su(1, 1) rather than of su(2))

based upon the use of coupling kernels; in [16], he showed that the same formula can be

deduced starting from the classical expansion of the 9-j coefficient in terms of 6-j coefficients

and performing Dougall’s summation formula [17] for a very well-poised 4F3(−1) series. In a

recent paper [18], Alǐsauskas realized that this technique can be applied for several distinct

expansions of the 9-j coefficient in terms of 6-j coefficients. Thus he obtained seven different

triple sum formulas for the 9-j coefficient of su(2). At the same time, he showed that this

technique has a basic analogue (or q-analogue), depending upon a q-analogue of Dougall’s

summation formula [19]. So he also obtained seven triple sum formulas for the 9-j coefficient

of suq(2), i.e. for the q-9-j coefficients.

The study of these different triple sum formulas from the point of view of multiple hy-

pergeometric series would be interesting, though rather tedious because of the complicated

structure of the formulas. However, when considering the class of singly stretched 9-j coeffi-

cients (i.e. one of the arguments in the 9-j coefficient is the sum of two others), most of these

triple sum formulas reduce to double sum formulas which are less complicated and easier

to handle. Alǐsauskas actually wrote down these double sum formulas [18, Section IV.B],

and used them to derive certain rearrangement formulas of double sum series and their basic

analogues.

In the present paper we shall show that the double sum formulas for the singly stretched

9-j coefficient actually give rise to a fairly complete theory of transformation formulas for

terminating double hypergeometric series of Kampé de Fériet type. This is particularly

interesting because until now not many transformation formulas for multiple hypergeometric

series are known, even though transformation formulas for hypergeometric series of a single

variable play an important role [17, 20]. The double hypergeometric series appearing in this
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context are proper Kampé de Fériet functions F p:r;r
q:s;s with q + s = 2 and p + r = 3. Such

functions have been defined in [21, 22], and studied by Srivastava and Karlsson [23], whose

notation we follow. This notation is a rather straightforward extension of that for single

hypergeometric series, e.g.

F 1:2;2
0:2;2

[

e :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;
x, y

]

=
∞

∑

j,k=0

(e)j+k

(a)j(b)j

(c)j(d)j

(a′)k(b
′)k

(c′)k(d′)k

xj

j!

yk

k!
, (1)

and

F 1:2;2
1:1;1

[

e

d

:

:

a, b

c

;

;

a′, b′

c′
;

;
x, y

]

=

∞
∑

j,k=0

(e)j+k

(d)j+k

(a)j(b)j

(c)j

(a′)k(b
′)k

(c′)k

xj

j!

yk

k!
. (2)

Herein, (a)k is the classical Pochhammer symbol [20, 17],

(a)k = a(a + 1) · · · (a + k − 1); (3)

a, b, . . . are referred to as the parameters of the series, and x, y as the variables. Observe

that factors of the form (d)j+k or (e)j+k are responsible for the fact that such double series

cannot simply be written as the product of two single hypergeometric series. The Kampé de

Fériet series appearing in the context of double sums related to the 9-j coefficients are those

of type F 1:2;2
0:2;2 , F 1:2;2

1:1;1 and F 0:3;3
1:1;1 .

Convergence properties of such Kampé de Fériet series have been considered in [24]. In

this paper, however, all the series dealt with are terminating series and hence there are no

convergence conditions. Note that the termination of Kampé de Fériet series such as (1)

or (2) can be assured in two ways :

• a common numerator parameter equals a negative integer : e.g. e = −n, with n a

positive integer, in (1) or (2) yields a terminating series irrespective of the value of the

other parameters;

• two separate numerator parameters are equal to negative integers : e.g. a = −n and

a′ = −m in (1) or (2), with m and n positive integers.

In both cases the denominator parameters of the Kampé de Fériet series should not be

negative integers. If some of the lower parameters are nevertheless negative integers, then

they should be smaller (or equal) than the parameters responsible for the termination of the

series.
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The transformation formulas deduced here from the double sum expressions for 9-j co-

efficients turn out to be of a quite general nature. Apart from the parameter(s) responsible

for the termination, the remaining parameters of the series are completely general. Further-

more, the transformation formulas, together with trivial permutation symmetries, are shown

to generate a symmetry group for the double hypergeometric series. In other words, we shall

show that for each of the double hypergeometric series considered here, there exists a whole

set of transformation formulas related to a group action on the parameters of the double

series.

In the paper of Alǐsauskas [18], the emphasis is on the q-9-j coefficients, i.e. the 9-j

coefficients of suq(2). So it would be interesting to see if the transformation theory developed

here could be generalized to the basic analogue (i.e. the q-analogue). This is indeed the case.

We shall give and prove a set of new transformation formulas for basic double series. For the

notation related to q-series and single basic hypergeometric series, we refer to the standard

book of Gasper and Rahman [25]. The double series appearing in this context, however, are

special cases of general basic double series defined by Srivastava and Karlsson [23, p. 349].

II The stretched 9-j coefficient and double series

Alǐsauskas [18] considers the stretched 9-j coefficient denoted by







j1 j2 j12

j3 j4 j34

j13 j24 j12 + j34







, (4)

which is a transformation coefficient connecting two different ways in which four angular

momenta j1, j2, j3 and j4 can be coupled. Since they stand for angular momenta, all the

arguments in (4) are nonnegative integers or half-integers. In fact, in [18], the q-analogues of

such 9-j coefficients are considered, but here we first treat the classical case (q = 1).

In [18, Section IV.B], a list of double sum expressions is determined for (4). It is not

difficult to rewrite these in terms of double hypergeometric series of Kampé de Fériet type.

For example, from [18, (4.3d)] one deduces :







j1 j2 j12

j3 j4 j34

j13 j24 j12 + j34







= C × (5)

F 1:2;2
0:2;2

[

−j1 − j2 + j12 :

:

−j2 − j4 + j24,−j2 − j4 − j24 − 1

−2j2,−j2 − j4 + j12 + j34 − j13

;

;
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j13 − j1 + j3 + 1,−j1 − j3 + j13

−2j1, j4 − j1 − j34 + j13 + 1

;

;
1, 1

]

,

where C is some constant. Similarly, [18, (4.4b)] yields :






j1 j2 j12

j3 j4 j34

j13 j24 j12 + j34







= C ′ × (6)

F 1:2;2
1:1;1

[

−j1 − j2 + j12

1 − j1 − j34 + j13 − j2 + j24

:

:

−j2 − j4 + j24, 1 + j4 − j2 + j24

−2j2

;

;

j13 − j1 + j3 + 1,−j1 − j3 + j13

−2j1

;

;
1, 1

]

,

where C ′ is another constant. Upon equating the rhs’s of (5) and (6), using the actual values

of C and C ′, and relabelling the parameters of the series, one finds :

F 1:2;2
0:2;2

[

−n :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;
1, 1

]

=
(d − a + n − 1)!(d − 1)!

(d − a − 1)!(d + n − 1)!
F 1:2;2

1:1;1

[

−n

d′ + a

:

:

a, c − b

c

;

;

a′, b′

c′
;

;
1, 1

]

.

(7)

Herein, the parameters satisfy d + d′ = 1 − n, so there are in total eight free parameters

(as there are in (4)). Since all the parameters in (4) are nonnegative integers or half-

integers, the parameters in (7) in first instance all correspond to integers. In particular,

−n corresponds to a negative integer (due to triangular conditions satisfied by the angu-

lar momentum coefficients). However, once the equation is rewritten in the form (7), with

(d−a+n−1)!(d−1)!
(d−a−1)!(d+n−1)! = (d−a)n

(d)n
, it is obvious that this is a rationial identity in the remaining pa-

rameters a, b, c, d, a′, b′, c′ and d′, once −n is a fixed negative integer. Therefore, (8a)

holds for arbitrary parameters a, b, c, d, a′, b′, c′ and d′ (but still subject to the constraint

d+d′ = 1−n). As such, we have found a rather general transformation formula between two

terminating Kampé de Fériet series. This proves the first formula of the following theorem :

Theorem 1 Let n be a nonnegative integer and a, b, c, d, a′, b′, c′ and d′ arbitrary param-

eters with d + d′ = 1 − n. Then the following transformation formulas hold :

F 1:2;2
0:2;2

[

−n :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;
1, 1

]

=
(d − a)n

(d)n

F 1:2;2
1:1;1

[

−n

d′ + a

:

:

a, c − b

c

;

;

a′, b′

c′
;

;
1, 1

]

(8a)

=
(d − b + b′)n

(d)n

F 1:2;2
0:2;2

[

−n :

:

c − a, b

c, d′ − b′ + b

;

;

c′ − a′, b′

c′, d − b + b′
;

;
1, 1

]

,

(8b)

and

F 1:2;2
1:1;1

[

−n

d

:

:

a, b

c

;

;

a′, b′

c′
;

;
1, 1

]

=
(d − b − b′)n

(d)n

F 1:2;2
1:1;1

[

−n

1 − n − d + b + b′
:

:

c − a, b

c

;

;

c′ − a′, b′

c′
;

;
1, 1

]

.

(9)
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Proof. The transformation formula (8b) was deduced recently in a different context [26].

This equation can now also be seen in the context of the stretched 9-j coefficient. In fact,

it corresponds to a symmetry of this 9-j coefficient (namely a transposition of the first

and second column in (4)), re-expressed by means of (5). Finally, applying (8a) to the rhs

of (8b) and equating the resulting expression with the rhs of (8a) yields (9) (after appropriate

relabelling of the parameters). 2

Observe that in this section all Kampé de Fériet series are terminating because a common

numerator parameter equals a negative integer. In the following section we shall consider some

transformation formulas, also deduced from the stretched 9-j coefficient, for Kampé de Fériet

series that are terminating because of the appearance of two negative integers as separate

numerator parameters.

III Kampé de Fériet series with two negative integers as pa-

rameter

Though the transformation formulas with a single common numerator parameter as a negative

integer (i.e. Theorem 1) are new, there do exist some transformation formulas for Kampé de

Fériet series with two separate numerator parameters as negative integers. One of these

formulas is given by Singh [27], and reads :

F 0:3;3
1:1;1

[

d

:

:

−n, a, b

c

;

;

−m, a′, b′

c′
;

;
1, 1

]

=
(c − a)n(c′ − a′)m

(c)n(c′)m

× F 0:3;3
1:1;1

[

d

:

:

−n, a, b′

1 + a − c − n

;

;

−m, a′, b

1 + a′ − c′ − m

;

;
1, 1

]

, (10)

where n and m are nonnegative integers and b+ b′ = d. This, and some other transformation

formulas of similar type, can be found in or deduced from [18, Appendix C].

Let us first consider some transformation formulas that express a Kampé de Fériet series

of type F 1:2;2
0:2;2 into a series of a different type :

Theorem 2 Let m and n be nonnegative integers, and a, b, c, d, a′, b′ and c′ be arbitrary

parameters with c + c′ = 1 + d, then

F 1:2;2
0:2;2

[

d :

:

−n, a

b, c

;

;

−m, a′

b′, c′
;

;
1, 1

]

6



=
(b − a)n(1 − c)m

(b)n(c′)m

F 0:3;3
1:1;1

[

c − m

:

:

−n, a,−d + c − m

−n + a − b + 1

;

;

−m, b′ − a′, d

b′
;

;
1, 1

]

(11a)

=
(1 − c)m

(c′)m

F 1:2;2
1:1;1

[

d

c − m

:

:

−n, a

b

;

;

−m, b′ − a′

b′
;

;
1, 1

]

. (11b)

The proof of (11a) follows by comparing equations (4.3c) and (4.3e) of [18], making

appropriate relabellings, and using the same rational expression argument as in the proof of

Theorem 1. In a similar way, (11b) follows from (4.3b) and (4.4c) of [18].

It is worth mentioning that transformation formulas (8a) and (11b) are formally equiva-

lent (after rewriting the Pochhammer symbols in terms of Gamma functions and using the

constraint 1 − c = c′ − d to eliminate c from the Gamma functions in (11b)).

We can now present three results, giving transformation formulas for Kampé de Fériet

series of a particular type into series of the same type, for each of the types F 1:2;2
0:2;2 , F 1:2;2

1:1;1 and

F 0:3;3
1:1;1 .

Theorem 3 Let n and m be nonnegative integers and a, b, c, a′, b′, c′ and d be arbitrary

parameters with c + c′ = d + 1, then

F 1:2;2
0:2;2

[

d :

:

−n, a

b, c

;

;

−m, a′

b′, c′
;

;
, 1, 1

]

=
(−1)m(d)n(b − a)n(a′)m

(b)n(c′)m(b′)m(c)n−m

(12a)

× F 1:2;2
0:2;2

[

−m − c′ + 1 :

:

−n,−n − b + 1

−n + a − b + 1,−n − d + 1

;

;

−m,−a′ + b′

−m − a′ + 1,−m + n + c

;

;
1, 1

]

=
(−1)m(d)m(b − a)n(a′)m

(b)n(b′)m(c′)m

×F 1:2;2
0:2;2

[

−m − c′ + 1 :

:

−n, a

−n + a − b + 1, c

;

;

−m, 1 − m − b′

1 − m − a′, 1 − m − d

;

;
1, 1

]

. (12b)

Proof. The first formula, (12a), follows by comparing expressions (4.3a) and (4.3d) of [18],

and using the rational expression argument. The second formula is derived using (11a) and

Singh’s formula (10). 2

In (12a) the difference n − m might be negative, and then cn−m = (−1)m−n/(1 − c)m−n,

which is the natural extension of the Pochhammer symbol.

Using the above two formulas and (11b) yields :
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Theorem 4 Let n and m be nonnegative integers and let a, b, a′, b′, c and d be arbitrary

parameters, then

F 1:2;2
1:1;1

[

c

d

:

:

−n, a

b

;

;

−m, a′

b′
;

;
1, 1

]

=
(c)n+m(b − a)n(b′ − a′)m

(d)n+m(b)n(b′)m

× F 1:2;2
1:1;1

[

d − c

−n − m − c + 1

:

:

−n,−n − b + 1

−n + a − b + 1

;

;

−m,−m − b′ + 1

−m + a′ − b′ + 1

;

;
1, 1

]

(13a)

=
(b − a)n(b′ − a′)m

(b)n(b′)m

F 1:2;2
1:1;1

[

d − c

d

:

:

−n, a

−n + a − b + 1

;

;

−m, a′

−m + a′ − b′ + 1

;

;
1, 1

]

. (13b)

As a third and final result, we give the transformation formulas for Kampé de Fériet

series of type F 0:3;3
1:1;1 . The first formula follows from (12a) and (11a); the second is just

Singh’s formula (10).

Theorem 5 Let n and m be nonnegative integers and let a, b, c, a′, b′, c′ and d be arbitrary

parameters such that b + b′ = d, then

F 0:3;3
1:1;1

[

d

:

:

−n, a, b

c

;

;

−m, a′, b′

c′
;

;
1, 1

]

=
(b′)n+m(a)n(c′ − a′)m

(d)n+m(c)n(c′)m

× F 0:3;3
1:1;1

[

−n − m + 1 − b′
:

:

−n, c − a, 1 − n − m − d

−n − a + 1

;

;

−m,−c′ − m + 1, b

−m + a′ − c′ + 1

;

;
1, 1

]

(14a)

=
(c − a)n(c′ − a′)m

(c)n(c′)m

F 0:3;3
1:1;1

[

d

:

:

−n, a, b′

1 + a − c − n

;

;

−m, a′, b

1 + a′ − c′ − m

;

;
1, 1

]

. (14b)

IV Symmetry groups of terminating Kampé de Fériet series

In the previous sections we have determined transformation formulas between (terminating)

Kampé de Fériet series of the same type. It is known that transformation formulas of hy-

pergeometric series of a single variable can give rise to a transformation group [28]. This

transformation group, known as the symmetry group or invariance group of the series, arises

as a finite group acting on the parameters of the series. The existing transformation formulas

are then expressed as the invariance of a certain hypergeometric series under the action of

group elements on its parameters. For single hypergeometric series (and basic series), this

idea has been expanded in [28].

So it would be interesting to see whether there are any invariance groups behind the

transformation formulas for double hypergeometric series, as the ones we are dealing with in

this paper. One such invariance group for a double series has recently been discussed [26].

This concerns the invariance group related to the transformation formula (8b). Observe
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that (8b) gives a transformation between two series of the type F 1:2;2
0:2;2 . Apart from this

transformation, there are also trivial transformations for

F 1:2;2
0:2;2

[

−n :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;
1, 1

]

with d + d′ = 1 − n, (15)

namely the transposition of a and b, or the transposition of a′ and b′, or the exchange of all

primed with the corresponding unprimed parameters. It was shown in [26] that superposing

such trivial transformations with (8b) gives rise to a set of 64 transformations for the series

F 1:2;2
0:2;2 (with one common numerator parameter equal to −n). These 64 transformations

correspond to a group G of order 64, that we shall briefly describe because it also plays a

role in other transformations considered in this paper.

First, consider the permutation group S8 acting on (x1, x2, x3, x4, x
′

1, x
′

2, x
′

3, x
′

4), and its

subgroup D8 × D′

8. Herein, D8 stands for the dihedral group [29] (sometimes denoted by

D4) consisting of the 8 symmetries of the square (i.e. those permutations of x1, . . . , x4 that

preserve the square whose sides are labelled by x1, . . . , x4). Similarly, D′

8 is the same dihedral

group but acting on the primed labels x′

1, . . . , x
′

4. The group D8×D′

8 consists of 64 elements;

superposing on this group the interchange of primed and unprimed elements yields a group

of order 128, denoted by S2 × (D8 × D′

8). This is the invariance group of two squares whose

sides are labelled as follows :

x1 x′

1

x2 x′

2

x3 x′

3

x4 x′

4

The group G now consists of those 64 elements of S2× (D8×D′

8) that preserve the constraint

x1 + x3 + x′

1 + x′

3 − x2 − x4 − x′

2 − x′

4 = 0, (16)

i.e. those elements that map X = x1 +x3 +x′

1 +x′

3−x2−x4−x′

2−x′

4 into ±X by permuting

the indices. The following proposition [26] then describes the invariance group generated by

the transformation (8b) :

Proposition 6 Let xi, x′

i (i = 1, . . . , 4) be arbitrary parameters such that x1 +x3 +x′

1 +x′

3 =

x2 + x4 + x′

2 + x′

4 and let n be a nonnegative integer. Then the expression

f1(x) = (1−n
2 + x2 − x′

2)n F 1:2;2
0:2;2

[

−n :

:

x2 + x3, x1 + x2
∑

i xi,
1−n

2 + x2 − x′

2

;

;

x′

2 + x′

3, x
′

1 + x′

2
∑

i x
′

i,
1−n

2 + x′

2 − x2

;

;
1, 1

]

9



is (upto a sign) invariant under the action of G. The action of an element g of G is by

permuting the indices of x1, . . . , x
′

4, and we can write

f1(g · x) = εnf1(x),

where ε = ±1 is determined by g(X) = εX.

When determining the invariance group of the series

F 1:2;2
1:1;1

[

−n

d

:

:

a, b

c

;

;

a′, b′

c′
;

;
1, 1

]

(17)

the following relabelling is appropriate :

a = x2 + x3, b = x1 + x2, c =
∑

i

xi,

a′ = x′

2 + x′

3, b′ = x′

1 + x′

2, c′ =
∑

i

x′

i, d =
1 − n

2
+ x2 + x′

2. (18)

Here again, −n is a negative integer and x1, . . . , x
′

4 are arbitrary parameters satisfying (16).

Using this relabelling in (17), the transformation (9) corresponds (apart from a factor) to the

permutation g1 = (x1 x2)(x3 x4)(x
′

1 x′

2)(x
′

3 x′

4). The trivial transposition of a and b in (17)

corresponds to the permutation g2 = (x1 x3). And the interchange of primed and unprimed

parameters in (17) corresponds to the permutation g3 = (x1 x′

1)(x2 x′

2)(x3 x′

3)(x4 x′

4). It is

now easy to see that the elements g1, g2 and g3 generate the group G described earlier. Thus

we have the following result :

Proposition 7 Let xi, x′

i (i = 1, . . . , 4) be arbitrary parameters such that x1 +x3 +x′

1 +x′

3 =

x2 + x4 + x′

2 + x′

4 and let n be a nonnegative integer. Then the expression

f2(x) = (1−n
2 + x2 + x′

2)n F 1:2;2
1:1;1

[

−n
1−n

2 + x2 + x′

2

:

:

x2 + x3, x1 + x2
∑

i xi

;

;

x′

2 + x′

3, x
′

1 + x′

2
∑

i x
′

i

;

;
1, 1

]

is (upto a sign) invariant under the action of G, i.e. f2(g · x) = εnf2(x), where ε = ±1 is

determined by g(X) = εX.

So the invariance groups of (15) and (17) are the same : both series have 64 symmetries.

Moreover, the two non-trivial transformations (8b) and (9) both correspond to the same el-

ement, namely g1, of G.

10



Now we shall show that also the transformations with two numerator parameters −n and

−m being negative integers give rise to an interesting symmetry group. It will be convenient

to first describe the group, and then show that under a certain relabelling of the parameters

it is indeed the symmetry group of the transformations given in Theorems 3, 4 and 5.

Consider a prism with an equiangular triangle as basis and edges orthogonal to this basis.

The sides of the triangles are labelled by x1, x2, x3 and x′

1, x′

2, x′

3; the three edges are labelled

by x′′

1, x′′

2, x′′

3. For convenience we shall also label the basis triangle by n and the opposite

triangle by m :

Q
Q

Q
QQ�

�
�

��

�
�

�
��Q

Q
Q

QQ

x1

x2 x3

x′

1

x′

2 x′

3

x′′

1
x′′

2x′′

3

n

m

The symmetry group H of this prism is generated by four planes of symmetry : the three

planes of symmetry through an edge x′′

i (i = 1, 2, 3) and the plane of symmetry parallel with

the basis. Let ri (i = 1, 2, 3) denote the reflection about a plane of symmetry through an

edge x′′

i , and let r0 denote the reflection about the plane of symmetry that is parallel with the

basis. These four reflections map the prism into itself, and they generate the symmetry group

of the prism. This symmetry group H is a group of order 12, and it is easy to verify that it is

isomorphic to the dihedral group D12 (i.e. the symmetries of the hexagon). The generating

reflections correspond to permutations of x1, x2, . . . , x
′′

3 (and possibly an interchange of n and

m) :

r1 : (x2 x3)(x
′

2 x′

3)(x
′′

2 x′′

3),

r2 : (x1 x3)(x
′

1 x′

3)(x
′′

1 x′′

3),

r3 : (x1 x2)(x
′

1 x′

2)(x
′′

1 x′′

2),

r0 : (x1 x′

1)(x2 x′

2)(x3 x′

3)(n m).

It turns out that the transformations given in Theorems 3, 4 and 5 all have the same symmetry

11



group, described by H. Thus we can state the following :

Proposition 8 Let m and n be nonnegative integers, and let xi, x′

i, x′′

i (i = 1, 2, 3) be

arbitrary parameters such that
∑3

i=1 xi = 0,
∑3

i=1 x′

i = 0,
∑3

i=1 x′′

i = 0. Then the following

expressions

g1(x) = (2(1−n)
3 − x1)n(2−2n+m

3 − x′′

2)n(2(1−m)
3 − x′

1)m(2−2m+n
3 − x′′

3)m (19)

× F 1:2;2
0:2;2

[

1−n−m
3 + x′′

1 :

:

−n, 1−n
3 + x2

2(1−n)
3 − x1,

2−2n+m
3 − x′′

2

;

;

−m, 1−m
3 + x′

3
2(1−m)

3 − x′

1,
2−2m+n

3 − x′′

3

;

;
1, 1

]

,

g2(x) = (2(1−n−m)
3 + x′′

2)n+m(2(1−n)
3 − x3)n(2(1−m)

3 − x′

3)m (20)

× F 1:2;2
1:1;1

[

1−n−m
3 − x′′

3
2(1−n−m)

3 + x′′

2

:

:

−n, 1−n
3 + x2

2(1−n)
3 − x3

;

;

−m, 1−m
3 + x′

2
2(1−m)

3 − x′

3

;

;
1, 1

]

,

g3(x) = (2(1−n−m)
3 − x′′

1)n+m(2(1−n)
3 + x2)n(2(1−m)

3 + x′

3)m (21)

× F 0:3;3
1:1;1

[

2(1−n−m)
3 − x′′

1

:

:

−n, 1−n
3 − x1,

1−n−m
3 + x′′

2
2(1−n)

3 + x2

;

;

−m, 1−m
3 − x′

1,
1−n−m

3 + x′′

3
2(1−m)

3 + x′

3

;

;
1, 1

]

,

are (upto a sign) invariant under the action of H, the symmetries of the prism, i.e. g1(h·x) =

(−1)l0(n+m)g1(x), g2(h · x) = (−1)l(n+m)g2(x) and g3(h · x) = (−1)l0(n+m)g3(x), where l is

the number of reflections r1, r2, r3 in the expression of h and l0 is the number of reflections

r0, r1, r2, r3 in the expression of h.

Proof. Consider (19). Equation (12a) of Theorem 3 expresses that g1(h1 · x) = g1(x),

with h1 = (x1 x3 x2)(x
′

1 x′

3 x′

2)(x
′′

1 x′′

3 x′′

2). Similarly, equation (12b) of Theorem 3 ex-

presses that g1(h2 · x) = (−1)m+ng1(x), with h2 = (x1 x3)(x
′

1 x′

3)(x
′′

1 x′′

3). Apart from

the two transformations given in Theorem 3, there is of course also the trivial transforma-

tion interchanging −n, a, b, c with −m, a′, b′, c′; this expresses that g1(h3 · x) = g1(x) with

h3 = (x1 x′

1)(x2 x′

3)(x3 x′

2)(x
′′

2 x′′

3)(n m). It is now easy to verify that h1, h2 and h3 generate

H, i.e. the same group as generated by ri (i = 0, 1, 2, 3). Thus the symmetry statement

for (19) follows. The remaining cases (20) and (21) follow in a similar way from Theorems 4

and 5. 2

V Basic analogues of some transformation formulas

In this section we shall be dealing with the basic analogues (or q-analogues) of some of the

transformation formulas for double hypergeometric series considered in sections II and III. For
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a general introduction and background to basic hypergeometric series, see [25], whose notation

we follow : thus q is a parameter with |q| < 1; (a; q)n is the q-shifted factorial; (a, b, c; q)n

stands for (a; q)n(b; q)n(c; q)n; p+1Φp is the common notation for a basic hypergeometric series

in one variable; etc.

The double basic hypergeometric series appearing in the present context is a special case

of general double basic series defined by Srivastava and Karlsson [23, p. 349]. So we use their

notation to define the series

Φ1:2;2
0:2;2

[

e :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;

q; x, y

λ, µ, ν

]

=

∞
∑

j,k=0

q
λ
2
j(j−1)+ µ

2
k(k−1)+νjk(e; q)j+k

(a; q)j(b; q)j

(c; q)j(d; q)j

(a′; q)k(b
′; q)k

(c′; q)k(d′; q)k

xj

(q; q)j

yk

(q; q)k

; (22)

the definition of Φ1:2;2
1:1;1 and Φ0:3;3

1:1;1 is completely analogous. For double basic series such as

(22), ν is usually taken to be 0, in which case this is a straightforward double series analogue

of the basic series 3Φ2. However, also the cases with ν = +1 or ν = −1 appear in the

literature [30, 27], and will play a role in the transformation formulas given here.

The main purpose of this section is to show that the different expressions of q-9-j co-

efficients of [18], in the singly stretched case, give rise to new transformation formulas for

double basic hypergeometric series of the type Φ1:2;2
0:2;2, Φ1:2;2

1:1;1 and Φ0:3;3
1:1;1. Alǐsauskas actually

realized that his expressions gave rise to “rearrangement formulas of double sums” (see [18,

Appendix C]), but he did not write them as transformation formulas of series of the type (22).

Furthermore, he did not recognize that some of these formulas allow for a set of very general

parameters.

In this section we shall discuss some of the q-analogues of theorems given in sections II

and III. Rather than derive these q-analogues from the different double series expressions of

Alǐsauskas [18], a direct proof is given. It turns out that the direct proofs of such transfor-

mation formulas are fairly easy, and all rely on the same technique.

We know of two genuine transformation formulas for double basic hypergeometric series

that have appeared in the literature (by a genuine transformation formula, we mean a formula

expressing a basic double series of a particular type into another series of the same type).

One of these was given by Singh [27] : if m and n are nonnegative integers, and a, b, c, a′, b′, c′

13



and d arbitrary parameters with bb′ = d, then

Φ0:3;3
1:1;1

[

d

:

:

q−n, a, b

c

;

;

q−m, a′, b′

c′
;

;

q; cdqn/ab, c′dqm/a′b′

0, 0, 1

]

=

(c/a; q)n(c′/a′; q)m

(c; q)n(c′; q)m

Φ0:3;3
1:1;1

[

d

:

:

q−n, a, b′

q1−na/c

;

;

q−m, a′, b

q1−ma′/c′
;

;

q; q, q

0, 0, 0

]

. (23)

The other was the topic of a recent paper [26] : if n is a nonnegative integer, and a, b, c, d, a′, b′, c′

and d′ are arbitrary parameters with dd′ = q1−n, then

Φ1:2;2
0:2;2

[

q−n :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;

q; cdqn/ab, c′d′qn/a′b′

0, 0,−1

]

=

(d′b/b′; q)n

(d′; q)n

b−n Φ1:2;2
0:2;2

[

q−n :

:

c/a, b

c, d′b/b′
;

;

c′/a′, b′

c′, db′/b

;

;

q; q, q

0, 0, 0

]

. (24)

Observe that (23) is the basic analogue of (14b), and (24) is the basic analogue of (8b).

We shall now indicate how such formulas, and others, can be derived directly. First, we

shall deduce two basic analogues of (8a), namely : if dd′ = q1−n then

Φ1:2;2
0:2;2

[

q−n :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;

q; cdqn/ab, y

0, 0,−1

]

=
(d/a; q)n

(d; q)n

Φ1:2;2
1:1;1

[

q−n

ad′
:

:

a, c/b

c

;

;

a′, b′

c′
;

;

q; q, ay

0, 0, 0

]

, (25)

and

Φ1:2;2
0:2;2

[

q−n :

:

a, b

c, d

;

;

a′, b′

c′, d′
;

;

q; q, y

0, 0, 0

]

=
an(d/a; q)n

(d; q)n

Φ1:2;2
1:1;1

[

q−n

ad′
:

:

a, c/b

c

;

;

a′, b′

c′
;

;

q; bq/d, y

0, 0, 0

]

. (26)

Herein, as usual, n is a nonnegative integer, a, b, c, d, a′, b′, c′ and d are arbitrary parameters

(subject to dd′ = q1−n), and y is an arbitrary variable.

For a proof, expand the lhs L of (25) into a double series :

L =
∑

j,k

(q−n; q)j+k(a, b; q)j(a
′, b′; q)k

(q, c, d; q)j(q, c′, d′; q)k

(

cdqn

ab

)j

ykq−jk

=
∑

k

(q−n, a′, b′; q)k

(q, c′, d′; q)k

yk
3Φ2

[

q−n+k, a, b

c, d

;

;
q, cdqn−k/ab

]

.

Now apply Sears’ transformation formula [25, (III.13)], and expand again :

L =
∑

k

(q−n, a′, b′; q)k

(q, c′, d′; q)k

yk (d/a; q)n−k

(d; q)n−k
3Φ2

[

q−n+k, a, c/b

c, aq1−n+k/d

;

;
q, q

]

=
∑

j,k

(q−n; q)j+k(a, c/b; q)j(a
′, b′; q)k

(q, c, aq1−n+k/d; q)j(q, c′, d′; q)k

ykqj (d/a; q)n−k

(d; q)n−k

. (27)
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Using d′ = q1−n/d, and elementary properties of q-shifted factorials, there comes

1

(aq1−n+k/d; q)j(d′; q)k

(d/a; q)n−k

(d; q)n−k

=
ak

(aq1−n/d; q)j+k

(d/a; q)n

(d; q)n

.

Plugging this in (27) yields the rhs of (25). The proof of (26) is completely analogous.

Now we can give the basic analogue of (9) :

Proposition 9 Let n be a nonnegative integer and a, b, c, a′, b′, c′ and d be arbitrary param-

eters, then

Φ1:2;2
1:1;1

[

q−n

d

:

:

a, b

c

;

;

a′, b′

c′
;

;

q; q, dc′qn/a′b′

0, 0, 0

]

=

bn(d/bb′; q)n

(d; q)n

Φ1:2;2
1:1;1

[

q−n

q1−nbb′/d

:

:

c/a, b

c

;

;

c′/a′, b′

c′
;

;

q; b′aq/d, q

0, 0, 0

]

. (28)

Proof. This is now straightforward : apply (25) to the lhs of (24) and (26) to the rhs of (24).

Comparing these expressions yields (28). 2

With this, we have given basic analogues of all transformation formulas of section II. Also

for the transformation formulas with two separate numerator parameters as negative integers,

given in section III, the basic analogues can be deduced. The proof of such formulas uses

similar steps as illustrated in the proof of (25) :

(a) rewrite the double sum as a single sum over a term containing a 3Φ2 series;

(b) perform one of Sears’ transformation formulas on the 3Φ2 and rewrite the result as a

double sum;

(c) make certain simplifications, using the constraint (if present) between the parameters;

(d) if necessary, repeat (a), (b) and (c) on the double sum obtained so far, and finally

rewrite it in the standard notation of a double basic hypergeometric series.

Detailed proofs of the remaining formulas in this section will not be given, since they all

follow the above technique. In fact, we will not even give the basic analogues of all of the

formulas of section III, but just list those corresponding to the transformation formulas of

Theorems 3, 4 and 5.
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Here are the basic analogues of (12a) and (12b), given in Theorem 3. The first, (12a),

has two basic analogues, namely

Φ1:2;2
0:2;2

[

d :

:

q−n, a

b, c

;

;

q−m, a′

b′, c′
;

;

q; bcqn/ad, b′c′qm/a′d

0, 0,−1

]

=
(−1)m(d; q)n(b/a; q)n(a′; q)m(b′/a′c)m(c/d)nq(

m+1

2 )−mn

(b; q)n(c′; q)m(b′; q)m(c; q)n−m

× Φ1:2;2
0:2;2

[

q1−m/c′ :

:

q−n, q1−n/b

aq1−n/b, q1−n/d

;

;

q−m, b′/a′

q1−m/a′, cqn−m

;

;

q; aqm+1/c, dqn+1/b′

0, 0,−1

]

, (29)

and

Φ1:2;2
0:2;2

[

d :

:

q−n, a

b, c

;

;

q−m, a′

b′, c′
;

;

q; q, q

0, 0, 0

]

=
(−1)m(d; q)n(b/a; q)n(a′; q)m(d/c)manq(

m+1

2 )

(b; q)n(c′; q)m(b′; q)m(c; q)n−m

× Φ1:2;2
0:2;2

[

q1−m/c′ :

:

q−n, q1−n/b

aq1−n/b, q1−n/d

;

;

q−m, b′/a′

q1−m/a′, cqn−m

;

;

q; q, q

0, 0, 0

]

, (30)

where in both formulas cc′ = qd. The basic analogue of (12b) is

Φ1:2;2
0:2;2

[

d :

:

q−n, a

b, c

;

;

q−m, a′

b′, c′
;

;

q; cbqn/ad, y

0, 0,−1

]

=
(−1)m(b/a; q)n(a′, d; q)mq−(m+1

2 )ym

(b; q)n(b′, c′; q)m

× Φ1:2;2
0:2;2

[

q1−m/c′ :

:

q−n, a

c, aq1−n/b

;

;

q−m, q1−m/b′

q1−m/a′, q1−m/d

;

;

q; q, b′qm+2/a′cy

0, 0, 0

]

, (31)

where again cc′ = qd.

The basic analogues of the formulas in Theorem 4 are given by :

Φ1:2;2
1:1;1

[

c

d

:

:

q−n, a

b

;

;

q−m, a′

b′
;

;

q; bdqn/ac, q

0, 0, 0

]

=
(b/a; q)n(b′/a′; q)m(c; q)n+m(a′)m(d/c)n

(b; q)n(b′; q)m(d; q)n+m

× Φ1:2;2
1:1;1

[

d/c

q1−n−m/c

:

:

q−n, q1−n/b

aq1−n/b

;

;

q−m, q1−m/b′

a′q1−m/b′
;

;

q; aq1−m/d, q

0, 0, 0

]

(32)

and

Φ1:2;2
1:1;1

[

c

d

:

:

q−n, a

b

;

;

q−m, a′

b′
;

;

q; dbqn/ac, q

0, 0, 0

]

=
(a′)m(b/a; q)n(b′/a′; q)m

(b; q)n(b′; q)m

× Φ1:2;2
1:1;1

[

d/c

d

:

:

q−n, a

aq1−n/b

;

;

q−m, a′

a′q1−m/b′
;

;

q; q, cq/b′

0, 0, 0

]

. (33)

Finally, the basic analogues of the transformation formulas (14a) and (14b) of Theorem 5

are given by

Φ0:3;3
1:1;1

[

d

:

:

q−n, a, b

c

;

;

q−m, a′, b′

c′
;

;

q; q, q

0, 0, 0

]

=
(a′)mbn(b′; q)n+m(a′; q)n(c′/a′; q)m

(d; q)n+m(c; q)n(c′; q)m

× Φ0:3;3
1:1;1

[

q1−n−m/b′
:

:

q−n, c/a, q1−n−m/d

q1−n/a

;

;

q−m, q1−m/c′, b

q1−ma′/c′
;

;

q; q, q

0, 0, 0

]

(34)
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and (23), where bb′ = d in both formulas.

This completes the list of q-analogues of the transformation formulas of Kampé de Fériet

series with two nonnegative integers as parameters, as given in Theorems 3, 4 and 5.

VI Summary

Using the different double sum expressions of Alǐsauskas [18] for a singly stretched 9-j coef-

ficient of su(2) or suq(2), we have deduced a set of new transformation formulas for double

hypergeometric series of Kampé de Fériet type and their basic analogues. An important

observation is that these transformation formulas are valid for quite general parameters, even

though the original 9-j coefficients assume only nonnegative integer or half-integer values

as arguments. The transformation formulas given here for double hypergeometric series of

Kampé de Fériet type are all terminating, which means that either a common numerator

parameter, or else two separate numerator parameters are negative integers.

The transformation formulas seem to inherit some of the symmetries of the 9-j coefficient.

In particular, we have shown that the given transformation formulas for a double series

of a particular type generate a symmetry group, acting on the parameters of the series.

These symmetry groups are explicitly determined and described as subgroups of permutation

groups, or as symmetry groups of some geometric object.

In the case of basic double hypergeometric series, corresponding to different expressions

of 9-j coefficients of suq(2), the relevant series is a double q-series as defined in [23]. Also for

these series, the transformation formulas are listed, and we have shown that an independent

proof of such transformations is easy.
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