1,340 research outputs found

    Exact results for a charged, harmonically trapped quantum gas at arbitrary temperature and magnetic field strength

    Full text link
    An analytical expression for the first-order density matrix of a charged, two-dimensional, harmonically confined quantum gas, in the presence of a constant magnetic field is derived. In contrast to previous results available in the literature, our expressions are exact for any temperature and magnetic field strength. We also present a novel factorization of the Bloch density matrix in the form of a simple product with a clean separation of the zero-field and field-dependent parts. This factorization provides an alternative way of analytically investigating the effects of the magnetic field on the system, and also permits the extension of our analysis to other dimensions, and/or anisotropic confinement.Comment: To appear in Phys. Rev.

    Calibration artefacts in radio interferometry. I. Ghost sources in WSRT data

    Get PDF
    This work investigates a particular class of artefacts, or ghost sources, in radio interferometric images. Earlier observations with (and simulations of) the Westerbork Synthesis Radio Telescope (WSRT) suggested that these were due to calibration with incomplete sky models. A theoretical framework is derived that validates this suggestion, and provides predictions of ghost formation in a two-source scenario. The predictions are found to accurately match the result of simulations, and qualitatively reproduce the ghosts previously seen in observational data. The theory also provides explanations for many previously puzzling features of these artefacts (regular geometry, PSF-like sidelobes, seeming independence on model flux), and shows that the observed phenomenon of flux suppression affecting unmodelled sources is due to the same mechanism. We demonstrate that this ghost formation mechanism is a fundamental feature of calibration, and exhibits a particularly strong and localized signature due to array redundancy. To some extent this mechanism will affect all observations (including those with non-redundant arrays), though in most cases the ghosts remain hidden below the noise or masked by other instrumental artefacts. The implications of such errors on future deep observations are discussed.Comment: 19 pages, 15 figures, submitted to MNRA

    Bayesian testing for process capability indices

    Get PDF
    Process capability indices have been widely used in the manufacturing industry. They measure the ability of a manufacturing process to produce items that meet certain specifications. A capability index relates the voice of the customer (specification limits) to the voice of the process. There is a need to understand and interpret process capability indices. Most of the existing work in this area has been devoted to classical frequentist large sample theory. An alternative approach to the problem of making inference about capability indices is the Bayesian approach. In this paper a Bayesian version of Tukey’s method is used for constructing simultaneous credibility intervals for all pairwise differences. A Bayesian procedure for testing all possible contrasts is also given. The problem of selecting the best supplier(s) has received considerable attention in the literature, but mainly from a classical frequentist point of view. A Bayesian simulation procedure is also illustrated to find the best supplier or group of suppliers.This method seems much easier to perform than the Monte Carlo integration method given in Wu, Shiau, Pearn and Hung (2016). In section 10, a sensitivity analysis regarding the prior choice is considered and in the last section, t-distributed data are analysed

    'n Vergelyking van drie verskillende tegnieke die berekening van glomerulere filtrasiespoed

    Get PDF
    The clearance of inulin, creatinine and radioactive tracers from the blood may be used to measure glomerular filtration rate (GFR). These techniques, however, are usually invasive and time-consuming. Although the clearance of a radioactive tracer is usually applied in nuclear medicine for the determination of GFR, it is also possible to convert the concentration of the tracer in the kidneys to absolute GFR by means of a regression equation. As this new technique is much faster, we have compared it with the conventional technique. A good correlation was found with the standard radionuclide techniques (r = 0,91), but the reference method was underestimated on the average by 14 ml/min. The new regression equation derived in our clinic will ensure future accurate GFR measurements within 6 minutes

    Exact first-order density matrix for a d-dimensional harmonically confined Fermi gas at finite temperature

    Full text link
    We present an exact closed form expression for the {\em finite temperature} first-order density matrix of a harmonically trapped ideal Fermi gas in any dimension. This constitutes a much sought after generalization of the recent results in the literature, where exact expressions have been limited to quantities derived from the {\em diagonal} first-order density matrix. We compare our exact results with the Thomas-Fermi approximation (TFA) and demonstrate numerically that the TFA provides an excellent description of the first-order density matrix in the large-N limit. As an interesting application, we derive a closed form expression for the finite temperature Hartree-Fock exchange energy of a two-dimensional parabolically confined quantum dot. We numerically test this exact result against the 2D TF exchange functional, and comment on the applicability of the local-density approximation (LDA) to the exchange energy of an inhomogeneous 2D Fermi gas.Comment: 12 pages, 3 figures included in the text, RevTeX4. Text before Eq.(25) corrected. Additional equation following Eq.(25) has been adde

    Theoretical Modeling of the Thermal State of Accreting White Dwarfs Undergoing Classical Novae

    Full text link
    White dwarfs experience a thermal renaissance when they receive mass from a stellar companion in a binary. For accretion rates < 10^-8 Msun/yr, the freshly accumulated hydrogen/helium envelope ignites in a thermally unstable manner that results in a classical novae (CN) outburst and ejection of material. We have undertaken a theoretical study of the impact of the accumulating envelope on the thermal state of the underlying white dwarf (WD). This has allowed us to find the equilibrium WD core temperatures (T_c), the classical nova ignition masses (M_ign) and the thermal luminosities for WDs accreting at rates of 10^-11 - 10^-8 Msun/yr. These accretion rates are most appropriate to WDs in cataclysmic variables (CVs) of P_orb <~ 7 hr, many of which accrete sporadically as dwarf novae. We have included ^3He in the accreted material at levels appropriate for CVs and find that it significantly modifies the CN ignition mass. We compare our results with several others from the CN literature and find that the inclusion of ^3He leads to lower M_ign for >~ 10^-10 Msun/yr, and that for below this the particular author's assumption concerning T_c, which we calculate consistently, is a determining factor. Initial comparisons of our CN ignition masses with measured ejected masses find reasonable agreement and point to ejection of material comparable to that accreted.Comment: 14 pages, 11 figures; uses emulateapj; accepted by the Astrophysical Journal; revised for clarity, added short discussion of diffusio

    Seismology of the Accreting White Dwarf in GW Lib

    Full text link
    We present a first analysis of the g-mode oscillation spectrum for the white dwarf (WD) primary of GW Lib, a faint cataclysmic variable (CV). Stable periodicities have been observed from this WD for a number of years, but their interpretation as stellar pulsations has been hampered by a lack of theoretical models appropriate to an accreting WD. Using the results of Townsley and Bildsten, we construct accreting models for the observed effective temperature and approximate mass of the WD in GW Lib. We compute g-mode frequencies for a range of accreted layer masses, Macc, and long term accretion rates, . If we assume that the observed oscillations are from l=1 g-modes, then the observed periods are matched when M ~= 1.02 Msun, Macc ~= 0.31 x 10^-4 Msun and ~= 7.3 x 10^-11 Msun/yr. Much more sensitive observations are needed to discover more modes, after which we will be able to more accurately measure these parameters and constrain or measure the WD's rotation rate.Comment: 4 pages, 3 figures; uses emulateapj; Accepted by the Astrophysical Journal Letter

    Realistic modeling of leakage and intrusion flows through leak openings in pipes

    Get PDF
    The hydraulics of leakage and intrusion flows through leak openings in pipes is complicated by variations in the leak areas owing to changes in pressure. This paper argues that the pressure–area relationship can reasonably be assumed to be a linear function, and a modified orifice equation is proposed for more realistic modeling of leakage and intrusion flows. The properties of the modified orifice equation are explored for different classes of leak openings. The implications for the current practice of using a power equation to model leakage and intrusion flows are then investigated. A mathematical proof is proposed for an equation linking the parameters of the modified orifice and power equations using the concept of a dimensionless leakage number. The leakage exponent of a given leak opening is shown to generally not be constant with variations in pressure and to approach infinity when the leakage number approaches a value of minus one. Significant modeling errors may result if the power equation is extrapolated beyond its calibration pressure range or at high exponent values. It is concluded that the modified orifice equation and leakage number provide a more realistic description of leakage and intrusion flows, and it is recommended that this approach be adopted in modeling studies

    Measuring White Dwarf Accretion Rates via their Effective Temperatures

    Full text link
    Our previous theoretical study of the impact of an accreting envelope on the thermal state of an underlying white dwarf (WD) has yielded equilibrium core temperatures, classical nova ignition masses and thermal luminosities for WDs accreting at time averaged rates of = 10^-11 - 10^-8 Msun/yr. These 's are appropriate to WDs in cataclysmic variables (CVs) of P_orb <~ 7 hr, many of which accrete sporadically as Dwarf Novae. Approximately thirty nonmagnetic Dwarf Novae have been observed in quiescence, when the accretion rate is low enough for spectral detection of the WD photosphere, and a measurement of T_eff. We use our theoretical work to translate the measured T_eff's into local time-averaged accretion rates, confirming the factor of ten drop in predicted for CV's as they transit the period gap. For DN below the period gap, we show that if is that given by gravitational radiation losses alone, then the WD masses are > 0.8 Msun. An alternative conclusion is that the masses are closer to 0.6 Msun and is 3-4 times larger than that expected from gravitational radiation losses. In either case, it is very plausible that a subset of CVs with P_orb < 2 hours will have T_eff's low enough for them to become non-radial pulsators, as discovered by van Zyl and collaborators in GW Lib.Comment: 4 pages, 3 figures; uses emulateapj; Accepted by the Astrophysical Journal Letter
    corecore