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ABSTRACT
This work investigates a particular class of artefacts, or ghost sources, in radio interferomet-
ric images. Earlier observations with (and simulations of ) the Westerbork Synthesis Radio
Telescope suggested that these were due to calibration with incomplete sky models. A theo-
retical framework is derived that validates this suggestion, and provides predictions of ghost
formation in a two-source scenario. The predictions are found to accurately match the result
of simulations, and qualitatively reproduce the ghosts previously seen in observational data.
The theory also provides explanations for many previously puzzling features of these artefacts
(regular geometry, point spread function-like sidelobes, seeming independence on model flux)
and shows that the observed phenomenon of flux suppression affecting unmodelled sources
is due to the same mechanism. We demonstrate that this ghost formation mechanism is a
fundamental feature of calibration, and exhibits a particularly strong and localized signature
due to array redundancy. To some extent this mechanism will affect all observations (including
those with non-redundant arrays), though in most cases the ghosts remain hidden below the
noise or masked by other instrumental artefacts. The implications of such errors on future deep
observations are discussed.

Key words: instrumentation: interferometers – methods: analytical – methods: numerical –
techniques: interferometric.

1 IN T RO D U C T I O N

In the context of radio interferometry, the term calibration refers to
the estimation and correction of instrumental errors (which are tra-
ditionally taken to also include effects of the troposphere and iono-
sphere) on the observed visibilities. Current calibration approaches
boil down to a joint fit to the observations of a sky model and an in-
strumental model, such as that provided by the radio interferometer
measurement equation (Hamaker, Bregman & Sault 1996; Smirnov
2011a). A typical observing strategy will include intermittent cal-
ibrator scans of a known calibrator field, for which an accurate
prior sky model is available; the obtained instrumental solutions
can then be interpolated on to scans of the target field. These can be
further refined through a process known as self-calibration or self-
cal (Cornwell & Wilkinson 1981). Selfcal is an iterative approach
(the sky model is refined at each iteration) that minimizes the error
between predicted visibilities corrupted by the instrumental model

� E-mail: trienkog@gmail.com

(the free parameters) and the observed visibilities in a least squares
(LS) sense during each iteration. An initial sky model for selfcal
can be obtained by imaging visibilities that have been corrected by
the interpolated calibrator solutions. Where a reasonable initial sky
model for the target field is available, it can even provide the starting
point for selfcal without the need for an external calibrator.

Traditional selfcal assumes an instrumental model where all ef-
fects are direction independent. The increased field of view of mod-
ern radio interferometers implies that direction dependent effects
(DDEs) can no longer be ignored during calibration. Incorporat-
ing direction dependent effects into calibration solutions (third-
generation calibration, or 3GC) has become a major research field
over the past few years (Intema et al. 2009; Wijnholds & van der
Veen 2009; Kazemi et al. 2011; Smirnov 2011b; Kazemi, Yatawatta
& Zaroubi 2013). van der Veen, Leshem & Boonstra (2004) and Rau
et al. (2009) have conducted good literature reviews on calibration.

It is well established that calibration can lead to imperfect
images, even to the generation of spurious source components,
elimination or suppression of real components, and the deforma-
tion of the structure of extended sources (Linfield 1986; Wilkinson,
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Calibration artefacts: I. ghosts in WSRT data 4031

Figure 1. Ghost sources in a 92 cm WSRT observation of J1819+3845. The target field is in the lower-image corner of the image, and Cyg A is to the upper
left, just outside the image.

Conway & Biretta 1988; Taylor, Carilli & Perley 1999; Martı́-Vidal
& Marcaide 2008; Martı́-Vidal et al. 2010). Kazemi & Yatawatta
(2013) have proposed a novel calibration technique that is meant to
minimize the amount of source suppression that occurs if the sky
model is incomplete. This approach uses a t-distribution to model
the residual noise. Martı́-Vidal & Marcaide (2008) have shown that
spurious point sources can form when performing calibration on
data containing nothing but white noise.

One of the more striking sightings of calibration artefacts oc-
curred in 2004, in a 92 cm Westerbork Synthesis Radio Telescope
(WSRT) observation of J1819+3845 by de Bruyn (Fig. 1). After
self-calibration, the map exhibited a string of ‘ghosts’ – point-
source-like objects, mostly of negative flux, arranged along a line
linking the brightest object in the field with Cyg A, which was about
20◦ away (i.e. in a distant sidelobe of the primary beam, and ex-
tremely attenuated by WSRT’s extremely low sidelobe response).
The pattern was highly peculiar as the ghosts were arranged with
some regularity, and their positions did not vary with frequency. No
other observations at the time were known to exhibit such features,
and the problem remained open until a series of 21 cm WSRT obser-
vations in 2010, which were done as part of the ‘Quality Monitoring
Committee’ project (QMC; Smirnov 2011c). In these observations,
a large pointing error was deliberately introduced, and the resulting
residual images (post-selfcal) exhibited similar artefacts. The ghosts
were fainter, but there were several strings of them, all associated
with the brightest objects in the field (Fig. 2). The problem was then
investigated empirically, through the use of simulations (Smirnov
2010), and this revealed a number of features as follows.

(i) The ghosts were associated with sky model errors (i.e. missing
or incorrect flux in the sky model, or direction-dependent errors
towards the brightest sources). In the QMC case, this was due to
the large pointing error; in the J1819+3845 case this was due to
insufficiently accurate modelling of Cyg A. Correcting for these
errors (by solving for differential gains towards the brighter sources
in the QMC case, and towards Cyg A in the J1819+3845 case)
made the ghosts disappear.

(ii) A simple simulation of a two-source (1 Jy and 1 mJy) field,
where only the 1 Jy source was included in the calibration model,
while the second source played the role of ‘contaminator’, produced

a similar ghost pattern in the residual visibilities. The peak intensity
of the pattern was roughly at μJy level, and appeared to be propor-
tional to the flux of the contaminator source (but did not depend on
the flux of the model source!). This suggested that ghosts should
always arise in the presence of incomplete sky models, but would
generally be buried in the thermal noise, unless the observations
were very sensitive, or the missing model sources were sufficiently
bright.

(iii) The ghosts always arranged themselves along a line (or lines)
passing through the unmodelled or poorly modelled source(s), and
the dominant source(s) in the sky model. The positions of the ghosts
corresponded to some (but not all) rational fractions of the interval
between the sources (i.e. 1/2, 1/3, 2/3, 1/5, etc.), with significant
variation in intensity. The positions did not depend on frequency.

(iv) The ghosts exhibited sidelobes that were similar, but not
identical to, the point spread function (PSF) of the telescope.

(v) Similar simulations with other telescopes (Very Large Array)
showed a far less regular artefact pattern.

These facts strongly suggested that the regularity of the ghost
patterns in Figs 1 and 2 was somehow related to the highly re-
dundant geometry of the WSRT, but the mechanism by which they
arose was not clear. Another conclusion of that study was that ghosts
could be minimized and eventually driven below the noise by labori-
ously improving the sky model and/or applying direction-dependent
solutions.

The problem of calibration artefacts is becoming more impor-
tant with the advent of new observational techniques and new radio
telescopes such as the Low Frequency Array (LOFAR), the up-
graded Jansky Very Large Array (JVLA), karoo array telescope
(MeerKAT), etc. as well as the upcoming Square Kilometre Array.
Not only do these telescopes promise (and in some cases already
deliver) unprecedented sensitivity, they also increase the data rates
substantially. The increased sensitivity means that fainter artefacts
cannot be ignored, while the data rates require that calibration be-
come largely automated, with careful and laborious manual data
reduction no longer an option. Observations of the diffuse H I in the
0.5 < z < 20 in order to probe galaxy formation (e.g. Furlanetto,
Oh & Briggs 2006) or the nature of dark energy (Chang et al. 2010)
need to face exquisite calibration in order to subtract foreground
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4032 T. L. Grobler et al.

Figure 2. Ghost sources in a 21 cm WSRT observation of the QMC2 field. Note that this is a residual dirty map, i.e. the sky model sources have been subtracted,
and the visibly brighter sources here are in fact relatively faint. The positions of the brightest subtracted sources are indicated by red circles. Multiple strings
of ghosts are visible, here highlighted by the ellipses. Note how the strings are firmly associated with the brightest sources.

that is spatially and spectrally orders of magnitude brighter (i.e.
Bernardi et al. 2009; Pober et al. 2013; Switzer et al. 2013). Similar
calibration requirements are needed for future stacking techniques
for H I detection (e.g. Delhaize et al. 2013) and continuum surveys
aimed at revealing the nJy population (Norris et al. 2013). On the
other hand, transient source detection pipelines require very fast
on-the-fly calibration, which necessitates the use of shallow and
incomplete sky models (Wijnholds, private communication). It is
clear that a deeper and theoretical understanding of calibration arte-
facts, including those buried in the noise, is required if these new
instruments and techniques are to achieve their scientific goals.

We have been investigating two classes of calibration artefacts,
namely spurious point sources (ghosts) and source suppression (i.e.
the reduction in observed flux of sources not included in the sky
model). This work establishes that both are manifestation of the
same underlying mechanism, and aims to provide a theoretical un-
derstanding of this. The objective is to extend the results of previous
papers (Linfield 1986; Wilkinson et al. 1988; Taylor et al. 1999;
Martı́-Vidal & Marcaide 2008), by studying the underlying theoret-
ical principles which are responsible for ghost formation and source
suppression (as opposed to conducting an empirical survey of the
different types of calibration artefacts that have been identified).

This paper is the first in a series; ongoing work is concentrating
on ghost formation and source suppression in non-redundant in-
terferometers, and on direction-dependent calibration. Ghosts have
already been spotted in LOFAR data (de Bruyn, private communica-
tion), and particularly in the presence of transient sources (Fender,
private communication), and early indications are that the same
mechanism is responsible. Future papers in the series will cover
these phenomena.

2 PRO B L E M OV E RV I E W A N D D E F I N I T I O N S

In this paper, we will concentrate on the WSRT example, since
its highly redundant east–west geometry makes for prominent and
regular ghosts. The results can be extended to other telescopes,
which the follow-up work on source suppression will also deal
with. We make a number of further simplifications as follows.

(i) We consider a case where the true sky consists of two discrete
point sources with fluxes A1 and A2, the former at the phase centre,
and the calibration model consists of just the central source A1.

(ii) The sources are unpolarized, and we consider only a single
frequency channel.

(iii) Only direction-independent calibration (i.e. regular selfcal)
is performed.

Multiple sources, multiple frequencies, polarization and studying
the effects of direction-dependent solutions will be the subject of
future work.

This section will anticipate some results of the following sections,
in order to provide a logical outline that the rest of the paper will
fill in.

2.1 Calibration

In its general form (unpolarized) calibration entails finding a di-
agonal antenna gain matrix G = diag(g) = diag([g1, g2, . . . , gn]T )
such that

||R − GMGH || (1)

MNRAS 439, 4030–4047 (2014)
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is minimized at each observational time step. The superscript no-
tation ()H in equation (1) denotes the Hermitian transpose. The
Hermitian matrix R is the observed unpolarized visibility matrix,
where element rpq of R is the visibility measured by the baseline
formed by antennas p and q. The matrix M is the corresponding
visibility matrix generated from the calibration sky model. Equation
(1) can then be restated as

||R − g gH �M|| = ||R − G�M||, (2)

where ‘�’ represents element-by-element multiplication (Hada-
mard product) and G = g gH is the matrix product of the gain
solution vector with its own Hermitian transpose. The elements of
G will be denoted by gpq. Crucially, G is a rank one matrix by con-
struction, and conversely, any rank one matrix can be decomposed
into a product of the form g gH .

Conventional approaches to radio interferometric calibration ig-
nore the autocorrelations (i.e. the diagonal of the visibility ma-
trix), since these are subject to a high additional self-noise term,
and employ non-linear optimization techniques such as Levenberg–
Marquardt (Levenberg 1944; Marquardt 1963) to find a maximum
likelihood (ML) solution for the off-diagonal terms of equation (1).
When a Gaussian noise model is assumed, this becomes equivalent
to LS minimization:

min
g

∑
p �=q

(
rpq − gpmpqgq

)2
, (3)

where gq denotes the complex conjugate of gq.
We will use the term LS calibration to refer to an LS solution of

equation (3). Most reduction packages in current use perform some
sort of LS calibration. Kazemi & Yatawatta (2013) propose an
alternative approach called robust calibration, where a ML solution
is obtained under the assumption of a t-distribution for the noise.
Since implementations of robust calibration are not yet publicly
available, we do not study them in this work. Where required, we
make use of the MEQTREES package (Noordam & Smirnov 2010) to
do LS calibration.

If autocorrelations are included in the optimization problem, an
approach called Alternating Least Squares gain estimation (ALS;
Boonstra & van der Veen 2003; Wijnholds & van der Veen 2009)
can be used to obtain a solution to equation (2). It is not clear
whether ALS provides a practical advantage over traditional LS
without autocorrelations, since implementations of ALS compatible
with conventional radio interferometric data do not exist. The issue
deserves to be investigated in a separate study. For our purposes,
ALS turns out to provide a vital theoretical framework in which
ghost formation can be understood analytically.

2.2 Ghost formation

In a nutshell, ghost sources are produced when equation (1) is solved
for with an incomplete or incorrect model M. Consider the simple
case where the observed visibilities R correspond to two point
sources, and the calibration model consists of a single point source
at centre, M = 1, where 1 (boldface 1) represents a matrix of all
ones (not a unity matrix!). If we then assume a perfect instrument
with unity gains, the actual solutions for G will not be quite equal
to unity, as they will attempt to fit for the difference between M
and R. Qualitatively, this process can be understood as follows:
calibration attempts to move some ‘real flux’ from the model M
to compensate for the unmodelled flux of the second point source.

When these solutions are applied to the data, the resulting corrected
visibilities

R(c) = G−1RG−H , (4)

will contain ghost sources in addition to real sources. In equation
(4), ()−1 denotes standard matrix inversion, while ()−H designates
(()H)−1. The rest of this paper analyses the mechanism by which
this comes about. Note that we do not consider the effects of noise
in our analysis; earlier empirical work (Smirnov 2010) has shown
that the same pattern arises with or without noise.

In this context, LS calibration has proven to be very difficult to
study theoretically. By contrast, the ALS formulation does yield the
necessary insights. In this paper, we therefore approach the problem
of ghosts from several directions as follows:

(i) we develop a theoretical framework based on ALS that pre-
dicts ghost formation;

(ii) we empirically compare the results of ALS and LS calibra-
tion, and show that they yield similar ghost patterns (with minor
differences that are explained);

(iii) we provide empirical results for ghost formation using ALS
and LS, and show that these match the theoretical predictions; and

(iv) we show that all of the above match observed ghost patterns
in real data, such as those seen in Fig. 1.

These results suggest that the theoretical insights gained from
the ALS framework are valid for the LS approaches, while the last
point demonstrates that our simplified assumptions provide a good
fit to real observations.

2.3 Distillation

Since ghost sources are relatively faint (as we will show below),
they can be difficult to detect over the thermal noise and the PSF
sidelobes of actual sources. In hindsight, this probably explains why
the phenomena were not spotted earlier. A straightforward way to
detect the ghosts in simulations is to ‘distill’ them into residual
visibilities as follows.

(i) We form predicted visibilities from a ‘true’ sky (M0) and an
incomplete calibration sky model (M).

(ii) The ‘observed visibilities’ R then correspond to M0.
(iii) We obtain calibration solutions G by solving equation (1)

using R and M.
(iv) We apply the solutions to R (equation 4), yielding corrected

visibilities R(c).
(v) We image the residuals R� = R(c) − R. The real sources

then (mostly) cancel out, the noise term, if any, also (mostly) cancels
out, and the resulting image yields the ‘distilled’ ghost sources.

Note that in real-life observations, actual gains are never unity,
and the residuals R(c) − R would not reveal much since real
sources would not cancel out. However, in our perfect telescope
simulation, the gain solutions account for sky model incomplete-
ness and nothing more, and the ghosts are easily visible in images
of the residuals.

In the two-source, noise-free case considered here, the true sky
M0 is equal to

R = M0 = A11 + A2 K ,

where K is a Fourier kernel matrix of complex phase terms corre-
sponding to the offset of the second source w.r.t. the phase centre.
The residuals then correspond to

R� = A1 G−11G−H + A2 G−1 K G−H − A11 − A2 K .

MNRAS 439, 4030–4047 (2014)
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By defining the matrix G� = G−11G−H = {g−1
pq } = { 1

gpq
} (i.e.

the element-by-element inverse or the Hadamard inverse of G), we
can rewrite this as

R� = A1(G� − 1) + A2(G� − 1)�K . (5)

The matrix G� − 1 is in some sense fundamental. As will be
shown below, it yields the basic ghost pattern corresponding to one
source. From the equation above, we can see that the residuals will
contain a superposition of two ghost patterns, scaled by A1 and A2,
with the second pattern shifted to the position of the second source.
In the general case, the residuals will correspond to a convolution of
the true sky with G� − 1. Since in practice A2 � A1 (i.e. the missing
flux in the model is usually considerably less than the flux accounted
for), the first realization of the pattern is dominant (moreover, as
will also be shown below, in the WSRT case the positions of the
ghosts in the two patterns fall on top of one another). We shall refer
to G� − 1 as the distilled ghost pattern.

3 TH E O R E T I C A L D E R I VAT I O N

In this section analytic expressions for the elements of G� are de-
rived. In the image domain each element of G represents a different
ghost pattern. The ghost patterns that are associated with G form
due to a loss of information. Since G is of a lower rank than R
(assuming a two-source sky and a single source in the model) some
information is lost when G is computed. The inadequate rank one
model G leads to a significant change in the Fourier characteristics
of the original matrix R. The change in Fourier characteristics man-
ifest as ghost patterns when G is imaged. When G� is calculated
the ghost patterns remain the same (the fluxes of the sources do
however change). When the antenna gain solutions are applied to
R the ghost patterns of G� get convolved with the true sky, which
implies that R(c) will contain ghost sources.

A brief introduction to the appendix is given in Section 3.1,
since it is crucial to the theory in this section. The mathematical
definition of a regularly spaced array is given in Section 3.2, while
Section 3.3 gives a better description of the experimental test case
that is considered. Analytic expressions for the elements of G� are
then derived in Section 3.5. Section 3.6 describes how this results
in ghost patterns in the dirty images, while Section 3.7 analyses the
effect of G� on the corrected visibilities.

The derivations in this section are highly mathematical; the cru-
cial result is equation (13), which shows that the calibrated vis-
ibilities on each baseline, in case of a two-source sky and one-
source model, are sampled from a periodic one-dimensional uv-
distribution, which in turn corresponds to a string of delta functions
in the image plane. The reader wishing to skip the heavier mathe-
matics is encouraged to take equation (13) at face value, and skip
to Section 3.6, which explains how the ‘strings’ corresponding to
each baseline combine to form ghosts in the final image.

3.1 Introduction to appendix

The brief introductory explanation from above will be expanded
upon in the rest of Section 3. The appendix will be one of the main
tools we will use to accomplish this. A brief introduction to the
appendix is therefore needed. The appendix contains lemmas and
propositions. The propositions are the main results that are used
to derive the theoretical results in this section. The lemmas are the
dependences that are required by these propositions. The relation
between the lemmas and propositions are discussed in greater detail

in the appendix itself. The appendix proves certain properties of
R(b), G(b) and G�(b), which are the extrapolated counterparts of
R, G and G� (see Definitions 1.3 and 1.4). These properties turn out
to be essential in deriving the distilled ghost pattern. The following
propositions are proven in the appendix.

(i) Proposition 1.5, the rank of R(b) is rank two. This proposition
quantifies the amount of information that is being lost during the
computation of G(b).

(ii) Proposition 1.6, the elements of the function-valued ma-
trix G(b) are periodic, effectively one-dimensional, differentiable,
Hermitian functions.

(iii) Proposition 1.7, it follows from Proposition1.6 that the el-
ements of G(b) can be written as an effectively one-dimensional
Fourier series (which ultimately leads to the formation of ghosts).

(iv) Proposition 1.8, the elements of G�(b) are also periodic, ef-
fectively one-dimensional, differentiable, Hermitian functions and
therefore by Proposition 1.7 can also be expressed as an effectively
one-dimensional Fourier series.

3.2 Regular and redundant array geometries

Since the geometric regularity of the WSRT layout will turn out to
have an important effect on ghost formation, let us provide a formal
mathematical definition here.

Definition 1.1 (Regularly spaced array) Let us pick a coordinate
system with origin at the first antenna position u1 = 0. We shall
call a set of antenna positions {up} regularly spaced if there exists a
common quotient baseline (CQB) b0 such that each antenna position
is an integer multiple of b0, i.e. that up = φpb0, with φp being a
whole number. We will also require that b0 is the largest such
baseline (equivalently, the greatest common divisor of {φp} is 1).

Definition 1.2 (Array geometry matrix) The array geometry ma-
trix � is an n × n integer matrix with elements φpq = φq − φp.

Obviously, a regularly spaced array defined in this way is nec-
essarily one dimensional. Note that regularity is preserved under
rotation (but only in an east–west array). Note also that b0 does
not necessarily correspond to a real baseline. Most commonly used
configurations of the WSRT are regularly spaced: the 10 fixed an-
tennas have a CQB of 144 m, while the CQB of the array as a
whole is determined by the positions of the movable antennas A to
D, with typical CQB lengths of 6 or 12 m.1 A redundant array will
have many identical entries in �. A regularly spaced array is not
necessarily redundant, but WSRT itself is highly redundant.

The matrix � has a few interesting mathematical properties,
which will be fully derived in the appendix. Note that the actual uv-
coordinates of each baseline are given by b0�. The matrix � can
be thought of as representing a whole number scaling relationship
between all the uv-tracks of the interferometer, and the reference
track given by the CQB b0(t), which is a function of time due to the
Earth’s rotation.

3.3 The two-source problem

Let us consider a sky composed of two unpolarized point sources
of flux A1 and A2, and a calibration sky model consisting of just the

1 Since the WSRT movable antennas can in principle be placed at any posi-
tion along a continuum, a non-regularly spaced configuration is technically
possible, but never used in practice.
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primary source A1. Since the solutions to the calibration equation
(equation 1) are invariant with respect to amplitude rescaling and
positional shifts that are applied to both the sky and the model,
we may, without loss of generality, restrict ourselves to the case
where the primary source has unity flux and is located at the phase
centre. The ‘true sky’ as a function of position s = (l, m) (where l
and m are the direction cosines) is then equal to IR(s) = A1δ(s) +
A2δ(s − s0), and the ‘model sky’ to IM(s) = A1δ(s), where A1 = 1,
s0 = (l0, m0) �= 0 is the position of the secondary source, and δ

is the Kronecker delta function. Let us further assume a perfect
interferometer with unity gains, a monochromatic observation, and
integration intervals sufficiently short to make smearing negligible.
The ‘observed visibility’ corresponding to the true sky IR can be
written as

r(u) = A1 + A2e
−2πiu·s0 , (6)

where u · s0 is a dot product. If the array is regularly spaced as
defined above, then the visibility observed by baseline pq at uv-
coordinates upq = φpq b0 is

Vpq = r(upq ) = r(φpq b0) = A1 + A2e
−2πiφpq b0·s0 , (7)

where b0 = b0(t) is the CQB. The ‘model visibilities’ correspond-
ing to the model sky IM above, are trivially all unity.

3.4 The extrapolated visibility matrix

The observed visibilities for each observational time step can be
packed into a two-dimensional matrix

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

V11 V12 · · · V1n

V21 V22 · · · V2n

...
...

...
...

Vn1 Vn2 · · · Vnn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

The elements of R are functions that depend on time. For a regularly
spaced array, equation (7) can be utilized to rewrite all the elements
of R as functions of b0. We can express this formally via the
following definition.

Definition 1.3 (Extrapolated visibility matrix) Let R(b) : R2 →
Cn×n be an n × n Hermitian function-valued matrix with entries

rpq (b) = r(φpq b), (9)

where r is given by equation (6), φpq is given by the array geometry
matrix �, b = (u, v) and s0 = (l0, m0) �= 0 are real two-vectors,
A1 = 1 and 0 < A2 < 1.

This allows us to formally define R(b) over the entire uv-plane,
i.e. for any value b. The actual observed visibilities R at time t are
given by R(b0(t)). For any given baseline pq, rpq (b0) corresponds
to the visibilities measured by that baseline. Since b0(t) follows
an elliptical track, our actual ‘measurements’ on baseline pq (i.e.
the values subject to calibration) are restricted to that series of uv-
points. However, by replacing b0 by the free variable b in equation
(9), we automatically define an ‘extrapolated’ visibility function
over the entire uv-plane. By definition, the values of rpq over the
track b0(t) are equal to visibilities measured by baseline pq over the
track φpq b0(t).

Note also that equation (9) can also be seen as a coordinate
scaling relationship between the observed visibility distribution r(u)
and any given rpq (b). To emphasize this, we use the variable u to
represent coordinates in the ‘observed’ uv-plane (where r lives), and

b for coordinates in the ‘scaled’ uv-planes (where the rpq functions
live). This also implies that the ‘sky’ corresponding to any rpq (i.e.
the inverse Fourier transform of rpq) is a scaled and stretched version
of the true sky.

Finally and most crucially (as we will see in the discussion of
ALS below), the R(b) matrix for any b �= 0 can be shown to have
rank two (see Proposition 1.5 in the appendix).

3.5 The calibration matrix

Since our model visibilities are all unity, the calibration process
(equation 2) entails finding some kind of ‘best fitting’ rank one
matrix G, given R. In effect, the calibration process results in
a mapping R → G; by extension, this also defines a mapping
R(b) → G(b) for any b. For LS calibration, the best fit is given
by equation (3). This has proven difficult to explore analytically,
so we will consider ALS calibration instead (and later empirically
show that it yields similar results).

In a nutshell, ALS calibration obtains a G by ‘de-ranking’ R, i.e.
keeping just its largest eigenvalue. More precisely:

Definition 1.4 (ALS calibration matrix) Let G(b) =
λ(b)x(b)xH (b), where λ(b) is the largest eigenvalue of R(b), and
x(b) is its associated normalized eigenvector.

We will designate the elements of G as gpq (b).
To provide a specific example of the above, let us create a theo-

retical three-element interferometer with a geometry matrix of

� =

⎡
⎢⎢⎣

0 3 5

−3 0 2

−5 −2 0

⎤
⎥⎥⎦ , (10)

and place a secondary source of flux A2 = 0.2 Jy at l0 = 1◦, m0 = 1◦.
Figs 3–5 graphically display the resulting R(b) and G(b) matrices.
The following observations can also be made. The functions rpq (b)
(top row of each figure) are trivial phase gradients, and are thus
continuous, differentiable, Hermitian and periodic in the u and v

direction with periods of 1
φpq |l0| and 1

φpq |m0| . They are effectively

one dimensional, i.e. constant along each line v = − l0
m0

u + c for
any c. The G(b) functions (bottom row of each figure) have a more
interesting structure, but are also differentiable, Hermitian, one di-
mensional and periodic, with periods along u and v of 1

|l0| and

Figure 3. The functions r12(b) and g12(b).
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4036 T. L. Grobler et al.

Figure 4. The functions r13(b) and g13(b).

Figure 5. The functions r23(b) and g23(b).

1
|m0| . Moreover, this holds for any ALS calibration matrix as de-
fined above (see Proposition 1.6). The difference between the gpq’s
is that each of them has a different secondary harmonic which is
determined by φ12, φ13 and φ23.

Any periodic, one-dimensional and differentiable function can be
written out in terms of a one-dimensional discrete Fourier transform.
We can therefore decompose each gpq as follows:

gpq (b) =
∞∑

j=−∞
cGj,pqe

−2πij b·s0 . (11)

Proposition 1.7 derives this result formally. The coefficients cGj,pq

(real, since gpq is Hermitian) have a very non-trivial structure, but
they can be calculated using equation (A13).

Now, since gpq (b) represents the predicted corrupted visibilities
(given that we have a unity model), it is fair to ask, what image-
plane distribution corresponds to the visibility distribution gpq (b)?
Doing an inverse 2D Fourier transform, we obtain

F−1{gpq}(s) =
∞∑

j=−∞
cGj,pqδ(s − j s0), (12)

i.e. a sum of delta functions whose locations are integer multiples
of s0 = (l0,m0).

Let us now define something we will call the ‘G-sky of baseline
pq’ as follows:

IG
pq (s) = F−1

{
gpq

(
b

φpq

)}

=
∞∑

j=−∞
cGj,pq δ

(
s − j s0

φpq

)
. (13)

The physical meaning of IG
pq is as follows: it is a sky distribution

whose Fourier transform yields a visibility distribution that, along
the uv-track given by φpq b0(t), is consistent with the predicted
corrupted visibilities gpq along the track given by b0(t) (note how the
scaling relationship of equation 9 enters into equation 13). In other
words, after the best-fitting calibration gains have been applied, the
resulting predicted visibilities for each baseline pq will be consistent
with a sky of delta functions spaced at intervals of s0/φpq, with
intensities given by {cGj,pq}.

These delta functions are the fundamental ingredients of the
ghosts observed in Fig. 1. We will shortly show that the corrected
visibilities exhibit a similar structure, but first let us consider what
happens to the visibilities given by gpq during imaging.

3.5.1 More on extrapolation

It has been our experience that the mathematical construct of ex-
trapolated visibility functions, which is key to the above argu-
ments, is particularly difficult to explain or justify clearly. In this
section, we attempt to reformulate the argument again in general
terms.

In order to understand ghost formation, we need to understand
the behaviour of the best-fitting visibilities produced by the calibra-
tion process. The actual visibilities per each baseline are sampled
along an elliptical track in the uv-plane. Analysing the mathematical
properties of functions defined along a specific uv-track proved to
be a difficult problem, analysing continuous functions defined over
the entire uv-plane proved more fruitful. We therefore proceed by
finding a unique mapping from the former (specific) problem to the
latter (general) problem, and back.

More specifically, the extrapolation operation defined above
(equation 9) provides a formal recipe for mapping sets of per-
baseline visibilities on to functions defined over the entire uv-plane
(giving us a per-baseline ‘virtual uv-plane’ that is consistent with
the visibilities over the one specific track of that baseline). We then
define the ALS calibration process in terms of operations on such
virtual uv-planes. The virtual uv-planes corresponding to the best-
fitting visibilities [gpq (b), bottom row of Figs 3–5], of which the
actual visibilities are a subset (given by the baseline’s uv-track)
turn out to have certain mathematical properties: they are Hermi-
tian, one dimensional and periodic (with the same period across all
baselines), and therefore correspond to a string of delta functions in
the image domain. Note how these properties are straightforward to
establish for functions defined over the entire uv-plane, but are a lot
less obvious if one only considers a subset of the uv-plane along a
track. (This observation is the main justification for the extrapola-
tion formalism.) This establishes that the best-fitting visibilities per
each baseline are consistent with a string of delta functions. Finally,
the geometric scaling relationship implicit in equation (9) causes
the spacing of the delta functions to be inversely proportional to
baseline length.
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Calibration artefacts: I. ghosts in WSRT data 4037

3.6 Imaging

In the situation above, each baseline’s predicted corrupted visibil-
ities correspond to its own apparent sky Ipq. During conventional
interferometric imaging, the per-baseline visibilities are interpo-
lated on to a ‘common’ uv-plane using convolutional gridding, and
the result is Fourier transformed back into an estimate of the sky
(the so-called dirty image). Mathematically, this can be described
as follows:

ID = F−1

{ ∑
pq

SpqF{Ipq}
}

. (14)

Here, Spq is the sampling function of baseline pq. The sampling
function is only non-zero in the neighbourhood of the track de-
scribed by upq , and accounts for both the imaging weights and
the interpolation coefficients of the gridding process. This can be
rewritten as

ID =
∑
pq

Ppq ◦ Ipq, (15)

where ‘◦’ denotes convolution, and Ppq = F−1{Spq} is the (unnor-
malized) PSF associated with baseline pq. Note that in the case of
each baseline seeing a common sky I, the above becomes

ID =
(∑

pq

Ppq

)
◦ I , (16)

which is the familiar result that the dirty image ID is the convolution
of the true sky I by the PSF of the array P given by

P =
∑
pq

Ppq . (17)

Now, recall that equation (13) describes a string of delta functions
spaced at intervals of s0/φpq . If we define φ0 as the least common
multiple of all φpq, we can rewrite the equation as a sequence of
delta functions spaced at intervals of s0/φ0, some of them possibly
of zero amplitude:

IG
pq (s) =

∞∑
k=−∞

dG
k,pq δ

(
s − ks0

φ0

)
, (18)

where dG
k,pq = cGj,pq if there is an integer j such that kφpq = jφ0, and

zero otherwise. To simplify further equations, we will use the δk as
shorthand for the kth delta function above:

δk(s) = δ

(
s − ks0

φ0

)
.

Substituting this into equation (15), we get

IG
D =

∑
pq

Ppq ◦
( ∞∑

k=−∞
dG

k,pq δk

)
(19)

=
∞∑

k=−∞

( ∑
pq

dG
k,pqPpq

)
◦ δk. (20)

Physically, this can be interpreted as follows. The dirty image
IG
D which we get as a result of imaging the predicted corrupted

visibilities consists of a string of delta functions at regularly spaced
locations ks0/φ0, each one convolved with its own ghost spread
function (GSF) P G

k :

P G
k =

∑
pq

dG
k,pqPpq . (21)

Comparing this to equation (17), we can now understand the
previously puzzling observation that the ghost sources in Fig. 1
appear to be convolved with differing PSFs, similar but not identical
to the nominal PSF of the WSRT.

Furthermore, ghost positions do not depend on frequency (only
on array and source geometry) – though the GSF of course does.
This is also consistent with previous observations.

3.7 Corrected visibilities

In real life, one would typically be imaging the corrected visibilities
(Section 2.2) given by

R(c) = G−1RG−H = G��R, (22)

and our real goal is to understand the effect of G on the corrected sky
I (c) = F−1{R(c)}. To get there, we need to take an intermediate step.
First, let us define a ‘G� sky’ whose Fourier transform is consistent
with the visibility distribution given by g−1

pq . Proposition 1.8 shows2

that the visibility distribution g−1
pq (b) can also be decomposed into

a Fourier series

g−1
pq (b) =

∞∑
j=−∞

c�
j,pqe

2πij b·s0 , (23)

which implies that the corresponding ‘G� sky’ has a similar form
to equation (18), but with a different set of coefficients

IG�
pq =

∞∑
k=−∞

d�
k,pq δk. (24)

Now, consider the matrix G�(b)�R(b). We will designate its
elements as r�

pq (b). The inverse Fourier transform of each element
is then

F−1{r�
pq} = F−1{g−1

pq } ◦ F−1{rpq}, (25)

and the inverse Fourier transforms of both components have already
been derived above. This means that the ‘corrected sky’ correspond-
ing to the corrected visibilities of baseline pq is given by

I (c)
pq = IG�

pq ◦ IR, (26)

i.e. is simply a convolution of the real sky IR with the ‘ghost
pattern’ of delta functions given by IG�

pq above. In other words, the
‘corrected sky’ will contain multiple instances of the fundamental
ghost pattern (what we call the distilled ghost pattern), centred on
each source, and scaled by the flux of that source. It can be seen
that the sky corresponding to the residuals R� is given by

I�
pq = IG�−1

pq ◦ IR =
(
IG�
pq − δ

)
◦ IR. (27)

The IG�−1
pq term is the per-baseline sky associated with the dis-

tilled ghost pattern G� − 1. By analogy with equation (20), we can
derive an expression for the full dirty image:

IG�−1
D =

∞∑
k=−∞

( ∑
pq

d̂�
k,pqPpq

)
◦ δk, (28)

2 Note that this proposition implicitly assumes gpq �= 0, i.e. the ALS calibra-
tion solutions are not null. Intuition suggests that this is a safe assumption: a
null gain solution would yield null predicted visibilities, which could hardly
be a ‘best fit’ to the calibration equation in any sense. However, obtaining
a rigorous proof of this has been surprisingly difficult, so we will let the
assumption stand as is.
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4038 T. L. Grobler et al.

where d̂�
k,pq = d�

k,pq − 1{k=0}, and the notation 1{k = 0} represents a
series whose coefficients are 1 at k = 0 and 0 elsewhere. Note the
physical meaning of this operation: the d�

0,pq coefficient corresponds
to the position of the real source A1 in the image, and is close to
unity, since the corrected visibilities contain the real source as well
as all the ghosts. Subtracting 1 from this corresponds to taking the
residual visibilities.

In our simple case the real sky consists of two sources, and the
resulting corrected sky is a superposition of two patterns given
by IG�

pq , scaled by A1 and A2, and centred on origin and on s0,
respectively. Since each pattern yields ghosts at discrete intervals
of s0/φ0, the two sets of positions align, and we can work out the
amplitudes of the resulting superposed ghost sources by summing
up the corresponding coefficients. By analogy with equation (20),
we can derive the following equation for the dirty image formed
from corrected visibilities:

I
(c)
D =

∞∑
k=−∞

( ∑
pq

(
A1d

�
k,pq + A2d

�
k−φ0,pq

)
Ppq

)
◦ δk. (29)

From equation (27), it follows that the dirty image correspond-
ing to the residuals can be obtained by subtracting unity from the
corresponding d coefficient

I�
D =

∞∑
k=−∞

( ∑
pq

(
A1d̂

�
k,pq + A2d̂

�
k−φ0,pq

)
Ppq

)
◦ δk, (30)

where again d̂�
k,pq = d�

k,pq − 1{k=0}.
Equations (20), (28), (29) and (30) summarize the formation of

ghost patterns in the predicted corrupted, corrected and residual
visibilities.

For our purposes, it is important to derive a theoretical prediction
for the amplitudes of individual ghost sources as a fraction of the
‘missing flux’ A2. Consider the kth ghost source located at ks0/φ0.
From equation (28), it follows that the amplitude of the ghost source
is given by the weighted sum∑
pq

d̂�
k,pqPpq (0),

where the per-baseline weights Ppq(0) are ultimately determined
by the imaging weights. For simplicity, let us consider the case of
natural weighting, in which case the sum becomes unweighted. We
can then define the quantity

ζk = 〈
d̂�

k,pq

〉
pq

, (31)

where 〈·〉pq denotes averaging over all baselines pq. This gives
us the amplitude of the kth ghost source in the distilled pattern
(assuming natural weighting), and can be computed analytically
from the results above. Likewise, the kth source in the corrected
residuals is a superposition of two appropriately scaled sources
from the distilled pattern, and its amplitude is given by (assuming
natural weighting)

ζ�
k = A1ζk + A2ζk−φ0 . (32)

Of particular interest is the quantity ζ�
φ0

/A2, as this gives the relative
amplitude of the ‘flux suppression ghost’ sitting on top of source A2.
Indirectly, this one ghost has been observable since the invention of
selfcal, since it corresponds to the previously noted phenomenon of
flux suppression in unmodelled sources. The theoretical derivation
given here provides an explanation for this.

4 R ESULTS

Section 3.5 provides a theoretical framework for understanding
ghost formation, as well as a mechanism for predicting the distribu-
tion and amplitudes of ghosts in the two-source case. In this section,
we apply the mechanism to predict ghost formation for a specific
observational scenario, and compare the results with simulations.

As discussed above, the ghost pattern is highly dependent on the
array configuration. The results in this section were all generated
with a traditional (36, 108, 1332 and 1404 m) WSRT configura-
tion. Unless specified otherwise, A2 = 0.2 Jy, A1 = 1 Jy, l0 = 1◦

and m0 = 0◦, and we assumed monochromatic observations at
a frequency of 1.45 GHz. To verify the theory developed above,
we compare the distribution of ghost sources obtained by three
methods.

(i) A theoretically predicted distribution, using the framework of
Section 3.5.

(ii) ALS calibration of simulated data (using a custom-made
implementation).

(iii) LS calibration of simulated data using the MEQTREES

(Noordam & Smirnov 2010) package.

Fig. 6 displays the theoretically determined distilled ghost pat-
terns for a selection of baselines (9A: 36 m, 01 and 12: 144 m,
05 and 16: 720 m, 0D: 2.7 km). We also obtain a set of simulated
distilled ghost patterns for the same set of baselines (Figs 7 and 8)
as follows:

(i) we run ALS or LS calibration on a set of simulated visibilities
and derive the calibrated visibilities;

(ii) we image the calibrated visibilities for each baseline (using
the LWIMAGER program – a fast fourier transform (FFT)-based imager
derived from the CASA libraries and functionally equivalent to the
CASA imager). The resulting dirty maps are given in Fig. 9; and

(iii) we measure fluxes at the ghost source positions in the result-
ing dirty images, resulting in Figs 7 and 8.

As predicted in Section 3, short baselines yield a few coarsely
spaced ghosts (e.g. 9A), while long baselines (e.g. 0D) yield many
finely spaced ghosts.

Comparing Figs 6–8, the following general observations (and
subsequent conclusions) can be made.

(i) The bright ghost sources in Fig. 6 and the bright sources in
Figs 7 and 8 show up at the same lm coordinates. This validates
equation (24).

(ii) The weaker sources given by the theoretical ghost patterns
(Fig. 6) are not visible in Fig. 7. Furthermore, there are small dif-
ferences in flux between the theoretical ghost patterns and the mea-
sured fluxes of the corresponding ghost sources in Fig. 7. Note,
however, that the dirty images are dominated by the sidelobes of
the brighter ghost sources – which in general (for n > 2) are not
amenable to normal deconvolution, since each GSF (equation 21)
is different. This both masks the fainter ghost sources and distorts
the flux measurements.

(iii) The ghost patterns yielded by ALS and LS calibration (Figs 7
and 8) are qualitatively similar, but show different amplitudes.
This is understandable, as they are products of slightly different
optimization problems, and therefore yield slightly different cali-
bration solutions. In particular, there are negative ghosts at 0◦ in
Fig. 7, while there are none in Fig. 8. This implies that ALS tends
to also suppress the flux of the modelled source, while LS does
not. This can be explained by the following argument. The total
flux of the sky and the calibration model is given by the diagonal
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Calibration artefacts: I. ghosts in WSRT data 4039

Figure 6. Theoretical ghost pattern for baselines 9A (36 m), 01 and 12 (144 m), 05 and 16 (720 m), 0D (2.7 km).

Figure 7. ALS ghost pattern for baselines 9A (36 m), 01 and 12 (144 m), 05 and 16 (720 m), 0D (2.7 km).

Figure 8. LS ghost pattern for baselines 9A (36 m), 01 and 12 (144 m), 05 and 16 (720 m), 0D (2.7 km).

terms (autocorrelations) of R and M, while the total power in the
off-diagonal terms is zero. When the autocorrelation constraints are
ignored (as in LS), there is no restriction on the total flux in the
model, which leaves the gain solutions gpgq in equation (3) more

freedom to fit the mean amplitude of rpq over time. If the autocor-
relations are also fitted (as is the case in ALS, equation 2), then
the gain solutions must also account for the total flux of the sky
(A1 + A2) using a model containing a total flux of only A1. This
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4040 T. L. Grobler et al.

Figure 9. Dirty images of ALS and LS ghost patterns for baselines 9A (36 m), 01 and 12 (144 m), 05 and 16 (720 m), and 0D (2.7 km).

yields mean gain amplitudes of slightly above unity in G, and thus
below unity in G�. This results in a negative ghost source at the
phase centre in the distilled ghost pattern IG�−1

pq , i.e. flux suppression
of the primary source.

Figs 10 and 11 display the ghost patterns that are obtained for ALS
and LS calibration using all antennas during imaging. In Fig. 10,
the secondary source is at l = 1◦, while in Fig. 11 it is placed at
l = 20◦ (thus qualitatively reproducing the observational scenario
of Fig. 1). In Fig. 11 only the ‘inner ghosts’ (the ghosts between
the primary and secondary source) are visible, while some ‘outer
ghosts’ are emerging in Fig. 10.

Fig. 12 displays the theoretically determined distilled ghost pat-
tern for the full WSRT array, as percentage of A2 flux (for the
A2 = 0.2 at 1◦ case). Compare these to the per-baseline patterns
in Fig. 6. The pattern exhibits a number of interesting features as
follows.

(i) Most (though not all) ghosts have negative amplitudes; the
positive ghosts tend to be fewer and much weaker.

(ii) The strongest response is the ‘flux suppression’ ghost at the
A2 position (1◦, or k = φ0). At about 13 per cent, it is perfectly con-
sistent with the amount of flux suppression normally observed when
calibrating WSRT data with LS. As discussed in Section 3.6, the
k = nφ0 positions are shared by the ghost patterns of all baselines,
and thus favour the formation of strong ghosts. It is not surprising
that the k = φ0 position shows the strongest response overall, as
that is where the missing flux that the calibration process is trying
to fit is located. The next-brightest ghost (∼6 per cent), is at 0◦. As
discussed above, this particular ghost is specific to ALS.

(iii) Curiously, the other ‘favoured’ positions (−2◦, −1◦, −2◦,
etc.) show a much diminished response – only about 1 ∼ 2 per cent
– i.e. weaker than the strongest of the inner ghosts (see e.g. the
‘halfway ghost’ at 1/2◦, with 2.5 per cent). Comparing this to
Fig. 6, we can partially understand how this comes about: different
baselines show a mix of positive and negative responses at these
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Calibration artefacts: I. ghosts in WSRT data 4041

Figure 10. ALS (left) and LS (right) distilled ghost pattern for the full WSRT array, with the A2 source at 1◦.

Figure 11. ALS (left) and LS (right) distilled ghost pattern for the full WSRT array, with the A2 source at 20◦.

Figure 12. Theoretical residual ghost pattern within 3◦ (left-hand plot) and 20◦ (right-hand plot) of phase centre, for the full WSRT array. The A2 source
was at 1◦. Amplitudes are given as a percentage of A2 flux. The 3◦ plot shows all the ghosts, while in the 20◦ plot, only ghosts with amplitudes in excess of
≈0.009 per cent of A2 are shown, and the y-axis is cut off just below the 1/2◦ ghost – the 0◦ and 1◦ ghost response thus extends well below the plot limits.

positions, whereas the 0◦ and 1◦ responses are consistently nega-
tive. The terms in the sum of equation (21) therefore average down
at the other positions.

(iv) Most of the strongest remaining ghosts are the inner ones
between the two sources (0◦and1◦). However, the ‘outer ghosts’
seem to extend indefinitely at the 0.1 ∼ 0.2 per cent level.

The latter two points are especially puzzling, and there should be
some fundamental mathematical reason for why this should be so,
but it escapes us at present.

4.1 Dependence on flux ratio

Now that equation (24) has been validated, the natural question
arises of how l0, m0, A1 and A2 influence the amplitudes of the ghost
pattern. Proposition 1.7 implies that the position of the secondary
source l0, m0 has no influence on the amplitudes – it only stretches
or shrinks the ghost patterns, and determines their orientation. (This
also explains why it was sufficient to verify the validity of equation

(24) at only one position of the secondary source.) The source fluxes,
obviously, do have an effect. As discussed in Section 3.3, the matrix
G is determined by A2 (which is equivalent to the flux ratio, since
we have been assuming A1 = 1 throughout), which implies that
the ghost amplitudes given by the various dk, pq coefficients are
dependent on A2.

The actual ghost amplitudes do not have a simple analytic rep-
resentation as they are ultimately determined by the interaction
between the largest eigenvalue of R and its associated eigenvector
(equation A13). We can, however, empirically show an approxi-
mately linear dependence on A2. Let us postulate this dependence:

ζk ≈ KkA2, (33)

and find an estimate for each Kk over a range of A2 values using LS.
The relative magnitude of the error of the fit

εk =
∣∣∣∣∣ ζk − KkA2

ζk

∣∣∣∣∣, (34)
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4042 T. L. Grobler et al.

Figure 13. The relative error magnitude of the linear fit (equation 34) for
the 13 brightest ghosts. The legends are the ghost locations, with source A2

being at 1◦.

as a function of A2 for the 13 brightest ghosts is plotted in
Fig. 13. This shows that most ghosts vary linearly with A2 to within
10 per cent. Curiously, the flux suppression ghost (1◦) is linear to
within 1 per cent, but the ghosts at 2◦ and 3◦ are the least linear of
all.3 Approximate linear models for the amplitudes of all the ghosts
in the distilled ghost pattern can be derived in this manner.

Consider now the dependence on A1 (for which we have used
a fixed value of 1 Jy until now). It is obvious from the calibra-
tion equation that rescaling the true sky and the model sky by the
same factor will have no effect on the solutions matrix G, which
completely determines the ζ k coefficients, i.e. the distilled ghost
amplitudes. This means that a calibration problem with fluxes of
A1 = A′

1 �= 1, A2 = A′
2 will produce the same coefficients as one

with A1 = 1, A2 = A′
2/A

′
1. In other words, the distilled ghost pat-

tern is determined by the flux ratio of the two sources rather than
their absolute fluxes.

The ghost pattern in the corrected or residual visibilities, on the
other hand, is a convolution of the distilled pattern with the sky,
and therefore will scale with absolute flux. To be more precise, for
fluxes A′

1, A′
2, the resulting residual ghost amplitudes (equation 32)

will be

ζ�
k ≈ A′

1Kk

A′
2

A′
1

+ A′
2Kk−φ0

A′
2

A′
1

= KkA
′
2 + Kk−φ0

A′2
2

A′
1

. (35)

When A′
2 � A′

1, the first term in the sum dominates, which makes
the ghost patterns in the residual image nearly independent of A′

1.
This explains the behaviour observed by Smirnov (2010) and dis-
cussed in Section 1.

Fig. 14 shows the theoretically derived relative ghost source am-
plitudes ζ k/A2 for the 13 strongest4 ghosts of the distilled ghost
pattern, as a function of A2. A true linear dependence would have
yielded constant horizontal lines; deviation from horizontal indi-
cates deviation from linearity. As we saw above, the 2◦ and 3◦

ghosts appear to be the least linear.

3 Yet another mathematical puzzle raised by the ghost phenomenon. We
have no theoretical explanation for this at present!
4 Strongest at A2 = 0.5, to be precise. As the plots show, the relative ranking
of the ghosts can actually change as a function of A2.

Fig. 15 shows the same amplitudes for the residual ghost pattern.
Since the residual pattern is a superposition of two scaled fundamen-
tal patterns, the dependence is different due to the additional linear
component given by the second term of equation (35) (since we
are plotting relative amplitudes, the equation should be divided by
A′

2). As expected, this component becomes negligible for A2 � A1.
For larger A2 the linear component can actually come to dominate
– note how the 2◦ ghost becomes stronger than the 1◦ ghost for
larger values of A2 (which is not surprising, since it contains the 1◦

component from the distilled ghost pattern, scaled by A2).

4.2 The role of array redundancy

WSRT’s highly redundant configuration plays a very important role
in ghost formation. Theoretically, this is explained by equation
(18). The set of all possible ghost positions is discrete, and given
by {ks0/φ0}. Each baseline pq yields ghosts at a specific subset of
these positions, i.e. at intervals (in k) of φ0/φpq. For short baselines,
φpq is small, and few ghosts are produced, and vice versa for long
baselines. Positions corresponding to redundant baselines, or more
generally to common integer factors of multiple φpq’s, will then
host stronger ghosts due to a contribution from multiple baselines.

This effect is vividly illustrated by Figs 6–8. The shortest base-
line (9A, 36 m, circle symbol) produces the most widely spaced
ghosts, at intervals of 1◦. The 144 m baselines (01 and 12, up/down
triangles) produce ghosts at 0.25◦, the 720 m baselines (05 and 16,
left/right triangles) produce ghosts at 0.◦05, and the longest base-
line (0D, 2.7 km, horizontal tick marks) produces the most finely
spaced ghosts. Groups of redundant baselines (01 and 12, 05 and
16) yield ghosts at exactly the same positions, but with different
amplitudes (sometimes even of different sign). The difference is
explained by the fact that the antennas constituting redundant spac-
ings form slightly different sets of baselines to other antennas, and
are thus subject to different calibration constraints.

The positions corresponding to {k = nφ0} (in this case, multiples
of 1◦) will have contributions from all baselines, and indeed (as we
have shown above), the 0 and 1 positions yield the strongest ghosts
in the combined pattern. Likewise, the next-strongest ghost appears
at the halfway point (k = φ0/2), since many φpq’s are even in the
(36, 108, 1332 and 1404 m) WSRT configuration. Other prominent
ghosts may be expected at other rational fractions of s0, which fully
explains earlier observations.

Equation (18) also provides us with a qualitative understanding
of ghost patterns for a less regularly spaced east–west array. As a
mental experiment, we may pick a length for b0 (say, 1 m), and
imagine moving the WSRT antennas to new positions such that the
spacings are still integer multiples of b0, but are mutually prime.
The least common multiple φ0 would then be the product of all
spacings, and would be very large (and most entries of the geometry
matrix � would be very large). Furthermore, no two baselines would
yield ghosts at any common position apart from {k = nφ0}. The
resulting pattern would then consist of very many finely spaced and
weak ghosts, with a lot of interaction between the GSF sidelobes,
and would therefore be a lot more noise like. Further decreasing
b0 would increase φ0 even more, thus spacing the ghosts even
finer and further washing out the overall response. Of course, to
within some fraction of the dish size, any conceivable array layout
can be considered regularly spaced (with a very large φ0), so we
can only properly talk about arrays that are more regular (WSRT,
small φ0) or less regular (large φ0). The argument above suggests
that highly regular array layouts result in more widely separated
and stronger ghosts. This is a hitherto unforeseen disadvantage
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Calibration artefacts: I. ghosts in WSRT data 4043

Figure 14. The relative amplitude |ζ k/A2| of the top 13 (top 3 on the left, 4–13 on the right) ghosts in the distilled ghost pattern, as a function of A2. Ranking
is by ghost amplitude at A2 = 0.5. The ghost positions are indicated by the legend, with source A2 being at 1◦.

Figure 15. The relative amplitude |ζ�
k /A2| of the top 13 (top 3 on the left, 4–13 on the right) ghosts in the residual ghost pattern, as a function of A2. Ranking

is by ghost amplitude at A2 = 0.5. The ghost positions are indicated by the legend, with source A2 being at 1◦.

to redundancy, and should be investigated and quantified in light
of current arguments promoting redundancy in future telescope
designs (Noorishad 2013) so as to exploit the redundancy calibration
technique (Noordam & de Bruyn 1982).

Similar considerations apply to fully 2D/3D arrays such as
LOFAR and the JVLA, where we may expect the overall ghost
response to be a lot more scattered and noise like. An upcoming
Grobler et al. (in preparation, Paper II) will study this subject in
more detail. Here we will just note that an exception to the above
considerations is ghosts occupying the {k = nφ0} positions, which
the theory shows must be yielded by all baselines, regardless of
redundancy. The two strongest ones, at positions 1 and 0 – the ‘flux
suppression ghost’ and the primary source ghost – sit on top of actual
sources, and are therefore not easy to detect as separate artefacts.
The other {k = nφ0} positions seem to yield much weaker ghosts
in practice (see above). However, ghosts at the −1 position have re-
cently been spotted in LOFAR data in two independent instances (de
Bruyn, private communication and Fender, private communication)
The latter in particular was associated with a bright transient source.
This suggests that the −1 ghost can yield a strong response under
some conditions. We will investigate this phenomenon in Paper II.

5 C O N C L U S I O N S A N D F U T U R E WO R K

In this work, we have demonstrated that the ghost source phe-
nomenon is a fundamental aspect of the selfcal process, and will
invariably arise during calibration with an incomplete sky model.
It is perhaps surprising that these features were not explicitly noted
before 2004, but radio interferometrists are accustomed to esoteric
instrumental artefacts showing up in poorly calibrated maps, so
something that is faint to begin with and goes away with a more
accurate calibration would not necessarily have attracted attention.
The strongest ghost – the one sitting on top of the missing model
source – has been indirectly observed as a matter of course, under
the guise of ‘flux suppression’, but being masked by the source
itself, it did not give enough clues to the true extent of the phe-
nomenon. Consider also that the spacing between ghosts (given by
s0/φ0) decreases as s0 becomes small, while the size of the ghosts
remains the same (as it is similar to the PSF size). There is therefore
some critical s0 beyond which the ghosts will begin to blend to-
gether into a single ‘spoke’ connecting the sources. In the authors’
experience, poorly calibrated WSRT maps will often exhibit spokes
connecting nearby brighter sources, which tend to go away once
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the sky model is improved. It is quite plausible that we have been
seeing ‘blended ghosts’ all along. Since the primary beam makes
it more likely for apparently bright sources to be near rather than
distant, such blends may be the most frequent manifestation of the
ghost mechanism.

Although we have only studied the two-source case theoretically,
empirical results (as well as the observations of Fig. 2) suggest that
with multiple missing sources (which would be a far more typical
case), many individual ‘ghost strings’ are produced at different ori-
entations. This would cause the artefacts and their positive/negative
sidelobes to overlap and, to an extent, average out, thus washing
out the regular geometric pattern and further contributing to their
non-detection. It took a special set of circumstances – i.e. a single
relatively strong and distant unmodelled source, high sensitivity,
and WSRT’s regular and highly redundant geometry – to make
the ghosts stand out (Fig. 1) as a regular and peculiar geometric
feature.

Given the increased sensitivity of current and upcoming in-
struments, and the emergence of statistical detection techniques,
as argued in Section 1, a good understanding of the ghost phe-
nomenon is vital. We have developed a theoretical framework for
explaining ghost formation in the two-source WSRT case, which
has yielded predictions that closely match simulations, qualitatively
match actual observations (which are of course always more com-
plex than just two sources), and explain all the previously puz-
zling features of the ghost phenomena that were empirically ob-
served earlier (positioning at rational fractions along a line con-
necting two sources, a ‘GSF’ that differs from the PSF, indepen-
dence – to first order – on the flux of the modelled source). We
have also established that the well-known phenomenon of flux sup-
pression is actually just one manifestation of the same underlying
mechanism.

A particularly intriguing avenue of further research is ghost for-
mation in the presence of direction-dependent effects. Recall that
in the original QMC result (Fig. 2), the ghosts were found to be
associated with uncorrected DDEs, and went away once direction-
dependent solutions had been applied. In this case, the unmodelled
flux responsible for ghost formation must have been due to errors
in the voltage beam, caused by the artificially large pointing error.
We may postulate that any unmodelled flux, whether due to errors
in the sky model, or unaccounted-for DDEs, will lead to ghosts on
some level.

More work is required to describe the ghost phenomenon,
both empirically and theoretically, for two-dimensional arrays,
for multiple and extended unmodelled sources, and for vari-
ous forms of direction-dependent calibration. In particular, flux
suppression, as the strongest manifestation of the ghost mech-
anism, needs to be studied in more detail (especially in light
of upcoming deep, blind surveys). We must also investigate al-
ternative calibration approaches. In particular, robust calibration
(Kazemi & Yatawatta 2013) has been shown to result in less
flux suppression, and must necessarily exhibit different ghost
behaviour.

Ultimately, we need to develop a theoretical and/or numerical
mechanism for answering the following fundamental questions.
Given an observational scenario, how deep/accurate does a sky
model need to be in order to suppress ghosts to a given level?
And, what then are the statistical properties and signatures (power
spectrum, etc.) of the remaining ghost artefacts? Building on the
theory and numerical tools developed in this work, prospects are
good that we can eventually provide rigorous answers to these
questions.
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APPEN D IX A : LEMMAS AND PROPOSITIO NS

This appendix contains formal mathematical derivations of the
propositions used in Section 3.

Proposition 1.5. If the function-valued matrix R(b) : R2 → Cn×n

is defined as stated in Definition 1.3 its rank does not exceed two
and its eigenvalues are either equal to zero or

n(A1 + A2)

2
± h, (A1)

where h = 1
2

√
[n2 − 4

(
n

2

)
][A1 + A2]2 + κ and κ = 4

∑
p<q (A2

1 +
A2

2 + 2A1A2 cos(2πφpq b · s0)).

Proof. The fact that the rank of R(b) does not exceed two follows
trivially from Lemma 1.9–1.11. Since the rank of R(b) is at most
two its characteristic equation is equal to (Blinn 1996; Ikramov
2009)⎛
⎝λ2 − tr(R(b))λ +

∑
p<q

∣∣∣∣∣
rpp rpq

rqp rqq

∣∣∣∣∣
⎞
⎠λn−2 = 0. (A2)

Solving for λ in equation (A2) produces the result. �
Proposition 1.5 states that the rank of R(b) is two and gives an

analytic expression of its largest eigenvalue, λ(b) (equation A1).
The expression of λ(b) is also used in Proposition 1.6 and Lemma
1.17. Proposition 1.5 has three direct dependences namely, Lemma
1.9, Lemma 1.10 and Lemma 1.11. Lemma 1.9 gives the properties
that a matrix must have so that its rank does not exceed k ∈ N.
Lemmas 1.10 and 1.11 show that R(b) has the required properties
so that its rank does not exceed two. The validity of Lemmas 1.10
and 1.11 follows from Lemma 1.14, which gives the mathematical
properties of �.

Proposition 1.6. The entries gpq (b) of G(b) are differentiable Her-
mitian functions. Moreover, gpq (u, v) = gpq (u + j

l0
, v + k

l0
) and

gpq (u,− l0
m0

u + c) = gpq (0, c) ∀j, k ∈ Z and ∀u, v, c ∈ R.

Proof. By Lemma 1.15 and equation (A1)

G
(

u + j

l0
, v + k

l0

)
= λ(u, v)x(u, v)xH (u, v)

= G(u, v), (A3)

for all j, k ∈ Z. Equation (A3) implies that gpq (u, v) = gpq (u +
j

l0
, v + k

l0
), ∀j, k ∈ Z. Similarly, gpq (u, − l0

m0
u + c) = gpq (0, c),

∀u, c ∈ R (by Lemma 1.16). The fact that gpq (b) is a differentiable
function is established by Lemma 1.17.

The function gpq(u, v) is the best possible (in a LS sense) fit of
rpq(u, v) (see equation 2). From this observation and the fact that
R and G are Hermitian matrices (as well as the fact that R(−b) =
R(b) ⇒ G(−b) = G(b)) the following statements logically follow.

(i) The best possible fit of rpq (−u, −v) = rpq (u, v) is gpq(−u,
−v).

(ii) The best possible fit of rqp(u, v) = rpq (−u,−v) = rpq (u, v)
is gqp(u, v) = gpq (u, v).

The above statements imply that gpq (−u, −v) = gpq (u, v). �

Proposition 1.6 shows that the elements gpq (b) of G(b) are pe-
riodic, effectively one-dimensional, differentiable, Hermitian func-
tions. The properties of gpq (b) follow from Lemma 1.15 (periodic-
ity), Lemma 1.16 (one dimensionality) and Lemma 1.17 (differen-
tiability). Lemma 1.17 is a consequence of Rellich’s theorem.

Proposition 1.7. Each element gpq (b) of G(b) can be written as the
following sum

gpq (b) =
∞∑

j=−∞
cj e

2πij b·s0 , (A4)

that is

gpq (u, v) =
∞∑

j=−∞
cj e

2πij (ul0+vm0), (A5)

where

cj = μ

∫ 1
2|m0 |

− 1
2|m0 |

∫ 1
2|l0 |

− 1
2|l0 |

gpq (u, v)e−2πij (ul0+vm0)du dv, (A6)

with μ = |l0||m0| and cj ∈ R.

Proof. Since gpq is a differentiable periodic function in R2 (Propo-
sition 1.6), consider the standard Fourier series expansion

gpq (u, v) =
∞∑

j=−∞

∞∑
k=−∞

cjke
2πi(j l0 u+km0v), (A7)

with

cjk = μ

∫ 1
2|m0 |

− 1
2|m0 |

∫ 1
2|l0 |

− 1
2|l0 |

gpq (u, v)e−2πi(jul0+kvm0)du dv (A8)

and μ = |l0||m0|.
Since gpq is Hermitian (Proposition 1.6), the coefficients (cjk) are

real numbers. Fix c ∈ R. Note that gpq (u, − l0
m0

u + c) = gpq (0, c),
∀u ∈ R (Proposition 1.6). We will denote this constant gpq(0, c) by
α ∈ C.

Evaluating the ‘diagonal’ of the series in equation (A7), at
(u, v) = (u, − l0

m0
u + c), results in another constant (i.e. indepen-

dent of u), say β ∈ C.
Thus,

h(u) ≡
∞∑

j=−∞

∞∑
k=−∞
k �=j

cjke
2πi(j−k)l0 u+km0c = α − β. (A9)

So, setting n = j − k, we get

α − β =
∞∑

j=−∞

∞∑
k=−∞
k �=j

cjke
2πikm0c · e2πi(j−k)l0u, (A10)

=
∞∑

j=−∞

∞∑
n=−∞
n �=0

cj,j−ne
2πi(j−n)m0c · e2πinl0u, (A11)

=
∞∑

n=−∞
n �=0

dne
2πinl0u, (A12)

where dn = ∑∞
j=−∞ cj,j−ne

2πi(j−n)m0c. Thus h(u), which is a one-
dimensional Fourier series without a constant term, is a constant
α − β. This is only possible if α − β = 0 and dn = 0 whenever
n �= 0. This is again only possible if each cj, j − n = 0 whenever
n �= 0. Thus cjk = 0 whenever j �= k.

Therefore, in the two-dimensional Fourier series expansion of
gpq, only the terms with j = k contribute. �
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Proposition 1.7 states that gpq (b) can be expressed as an effec-
tively one-dimensional Fourier series and follows from Proposition
1.6.

Note that Proposition 1.7 can also be stated using e−2πij b·s0 in-
stead of e2πij b·s0 in which case equation (A6) becomes

cj = μ

∫ 1
2|m0 |

− 1
2|m0 |

∫ 1
2|l0 |

− 1
2|l0 |

gpq (u, v)e2πij (ul0+vm0)du dv, (A13)

with μ = |l0||m0| and cj ∈ R. It is also important to note that
Proposition 1.7 assumes that l0 �= 0 and m0 �= 0. When either l0 or
m0 is zero the derivation simplifies and becomes one dimensional.
To avoid cluttering the derivation of the one-dimensional case is not
repeated here.

Proposition 1.8. Let h(u, v) = 1
gpq (u,v) , then h(u, v) will be a dif-

ferentiable Hermitian function if gpq (u, v) �= 0, ∀u, v ∈ R. More-
over, h(u + j

l0
, v + k

l0
) = h(u, v) and h(u,− l0

m0
u + c) = h(0, c),

∀j, k ∈ Z and u, v, c ∈ R.

Proof. To see that h has the same period as gpq, notice that for
any j, k ∈ Z we have h(u + j 1

l0
, v + k 1

m0
) = (gpq (u + j 1

lo
, v +

k 1
m0

))−1 = gpq (u, v)−1 = h(u, v). Similarly, h(u, u − l0
m0

u + c) =
h(0, c)∀u, c ∈ R. To see that h is Hermitian, recall that com-
plex conjugation satisfies 1

z
= 1

z
. Thus one computes h(−u, −v) =

1
gpq (−u,−v) = 1

(gpq (u,v))
= ( 1

gpq (u,v) ) = h(u, v). Finally, h(u, v) is also

differentiable since

∂h(u, v)

∂u
= −

∂gpq (u,v)
∂u

g2
pq (u, v)

, (A14)

∂h(u, v)

∂v
= −

∂gpq (u,v)
∂v

g2
pq (u, v)

, (A15)

exist (gpq(u, v) �= 0 by assumption). �
Proposition 1.8 shows that the elements of G�(b) are also pe-

riodic, effectively one-dimensional, differentiable, Hermitian func-
tions. Propositions–1.7 and 1.8 therefore imply that the elements of
G�(b) also have a one-dimensional Fourier-series representation.

Lemma 1.9. Let A be symmetric or Hermitian. If all principal
submatrices having k + 1 rows or k + 2 rows are singular, the rank
of A does not exceed k (Perlis 1952).

Lemma 1.10. All 3 × 3 function-valued principal submatrices of
R(b) are singular.

Proof. Due to the construction of R(b) all 3 × 3 function-
valued principal submatrices of R(b) have the following form (see
Lemma 1.14)

⎡
⎢⎢⎣

A1 + A2 A1 + A2e
−2πiab·s0 A1 + A2e

−2πiAb·s0

A1 + A2e
2πiab·s0 A1 + A2 A1 + A2e

−2πibb·s0

A1 + A2e
2πiAb·s0 A1 + A2e

2πibb·s0 A1 + A2

⎤
⎥⎥⎦ ,

(A16)

where A = a + b and a, b ∈ N. The determinant of the matrix in
equation (A16) is equal to zero (Kopp 2008). �
Lemma 1.11. All 4 × 4 function-valued principal submatrices of
R(b) are singular.

Proof. Due to the construction of R(b) all 4 × 4 function-
valued principal submatrices of R(b) have the following form (see
Lemma 1.14)⎡
⎢⎢⎢⎣

A1 + A2 A1 + A2e
−ka A1 + A2e

−kA A1 + A2e
−kC

A1 + A2e
ka A1 + A2 A1 + Ae−kb A1 + A2e

−kB

A1 + A2e
kA A1 + A2e

kb A1 + A2 A1 + A2e
−kc

A1 + A2e
kC A1 + A2e

kB A1 + A2e
kc A1 + A2

⎤
⎥⎥⎥⎦ ,

(A17)

where k = 2πib · s0, A = a + b, B = b + c, C = a + b + c and
a, b, c ∈ N. The determinant of the matrix in equation (A17) is
equal to zero. �
Definition 1.12. Let |A|d+1, where A ∈ Zk×k , be defined as∑n−1

p=1 app+1.

Definition 1.13. Let A denote the set of all m × m principal sub-
matrices of �, with m = n − 1. Let B denote the set of all k × k
principal submatrices of �, with 2 ≤ k ≤ n.

Lemma 1.14. The array geometry matrix � has the following prop-
erties:

(i) φpp = 0 (diagonal),
(ii) φpq �= 0 (non-diagonal),
(iii) φpq > 0; ∀q > p,
(iv) φpq = −φqp,
(v) gcd({φpq}q > p) =1.
(vi) |�|d+1 = φ1n.
(vii) |B|d+1 = b1k , ∀B ∈ B.

Proof. Property (i) is true since φpp = φp − φp = 0. Prop-
erties (ii)–(iv) follow trivially from the assumption that the an-
tenna positions {up} satisfy ||uq ||2 > ||up||2∀q > p. Property (v)
is true since gcd({φpq}q > p) = gcd(gcd({φ1q}),{φdq}q > d, d > 1)
= gcd(gcd({φq}),{φdq}q > d, d > 1) = gcd(1,{φdq}q > d, d > 1) = 1.
Property (vi) is true since |�|d+1 = ∑n−1

p=1 φpp+1 = ∑n−1
p=1 φp+1 −

φp = φ1n.
Property (vii) can be proven using the following argument. As-

sume that Aj ∈ A is obtained from � by deleting the jth row and
column from � (where j was chosen arbitrarily). When calculating
|Aj |d+1 three separate cases arise:

(i) 1 < j < n: |Aj |d+1 = ∑m−1
i=1 a

j
ii+1 = ∑n−1

p=1
p �=j,j+1

φpp+1 + φj,j+2

= ∑n−1
p=1

p �=j,j+1
φpp+1 + φjj+1 + φj+1j+2 = φ1n=a1m,

(ii) j = n: |Aj |d+1 = φ1n−1 = a1m and
(iii) j = 1: |Aj |d+1 = φ2n = a1m.

The above shows that |A|d+1 = a1m∀A ∈ A (since j was chosen
arbitrarily). Expanding the above derivation by using 1 < t ≤ n − 2
arbitrary deletions yields the required result. �
Lemma 1.15. Let λ(u, v) denote the largest eigenvalue of R(u, v)
and x(u, v) its associated normalized eigenvector, then x(u, v) =
x(u + j

l0
, v + k

m0
),∀j, k ∈ Z.

Proof. Notice that ∀j, k ∈ Z

R
(

u + j

l0
, v + k

m0

)
= R(u, v), (A18)

λ

(
u + j

l0
, v + k

l0

)
= λ(u, v); (A19)

implying that x(u, v) = x(u + j

m0
, v + k

l0
), ∀j, k ∈ Z. �
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Lemma 1.16. Let λ(u, v) denote the largest eigenvalue of
R(u, v) and x(u, v) its associated normalized eigenvector, then
x(u, − l0

m0
u + c) = x(0, c), ∀u, c ∈ R.

Proof. Notice that ∀u, c ∈ R

R
(

u, − l0

m0
u + c

)
= R(0, c), (A20)

λ

(
u, − l0

m0
u + c

)
= λ(0, c), (A21)

implying that x(u, − l0
m0

u + c) = x(0, c), ∀u, c ∈ R. �
Lemma 1.17. Let λ(u, v) denote the largest eigenvalue of R(u, v)
and x(u, v) its associated normalized eigenvector. The real function
λ(u, v) and the function-valued vector x(u, v) are differentiable.

Proof. The parameter dimension of R(b) is effectively one,
i.e. Rt (t) := R(u, v), λt (t) := λ(u, v) and xt (t) := x(u, v) with
t(u, v) := b · s0. The entries of Rt (t) are analytic functions depend-
ing on t ∈ R. Therefore, Rellich’s theorem (Lemma 1.18) implies
that λ(t) and x(t) are analytic [the largest eigenvalue is simple –
equation (A1)] and therefore also differentiable. We can therefore
calculate

∂λ(u, v)

∂u
= dλt (t(u, v))

dt

∂t(u, v)

∂u
, (A22)

∂λ(u, v)

∂v
= dλt (t(u, v))

dt

∂t(u, v)

∂v
. (A23)

The above equations imply that the real function λ(u, v) is differen-
tiable. A similar argument can be used to prove that x(u, v) is also
differentiable. �
Lemma 1.18. (Rellich’s Theorem) Let A(t): R → Cn×n be a
Hermitian function-valued matrix that depends on t analytically.

(i) The n roots of the characteristic polynomial of A(t) can be
arranged so that each root λj(t) for j = 1, . . . , n is an analytic
function of t.

(ii) There exists an eigenvector xj (t) associated with λj(t) for
j = 1, . . . , n satisfying

(a) ||xj (t)||2 = 1∀t ∈ R,
(b) xj (t) is an analytic function-valued vector of t (Reed & Simon

1978; Lax 1996; Kılıç, Mengi & Yıldırım 2011).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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