51 research outputs found

    Momentum noise in a quantum point contact

    Get PDF
    Ballistic electrons flowing through a constriction can transfer momentum to the lattice and excite a vibration of a free-standing conductor. We show (both numerically and analytically) that the electromechanical noise power P does not vanish on the plateaus of quantized conductance -- in contrast to the current noise. The dependence of PP on the constriction width can be oscillatory or stepwise, depending on the geometry. The stepwise increase amounts to an approximate quantization of momentum noise.Comment: 4 pages including 4 figure

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    Nonlinear Transport in a Quantum Point Contact due to Soft Disorder Induced Coherent Mode Mixing

    Full text link
    We show that the coherent mixing of different transverse modes, due to forward scattering of carriers by soft impurity- or boundary potentials leads to a nonlinear, asymmetric current response of quantum point contacts (QPC). The oscillating contribution to the current is sensitive both to driving voltage and to gate voltage in direct analogy to the electrostatic Aharonov-Bohm effect. Our calculations are in a good agreement with recent experimental data showing small-scale conductivity nonlinearities and asymmetry in QPC.Comment: 4 pages, 2 figures (availiable upon request), REVTEX, Applied Physics Report 93-4

    Longitudinal Patterns of Sexually Transmitted Infection Risk Based on Psychological Characteristics and Sexual Behavior in Heterosexual Sexually Transmitted Infection Clinic Visitors

    Get PDF
    Sources of Funding: The Strategic Programme (SPR) of the National Institute for Public Health and the Environment (RIVM) provided funding for this study (project number S/113004/01/IP).Peer reviewedPublisher PD

    A Current Induced Transition in atomic-sized contacts of metallic Alloys

    Get PDF
    We have measured conductance histograms of atomic point contacts made from the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low bias voltage (below 300 mV) resemble those of the noble metals whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.Comment: 5 pages, 6 figure

    Supercurrents through gated superconductor-normal-metal-superconductor contacts: the Josephson-transistor

    Full text link
    We analyze the transport through a narrow ballistic superconductor-normal- metal-superconductor Josephson contact with non-ideal transmission at the superconductor-normal-metal interfaces, e.g., due to insulating layers, effective mass steps, or band misfits (SIN interfaces). The electronic spectrum in the normal wire is determined through the combination of Andreev- and normal reflection at the SIN interfaces. Strong normal scattering at the SIN interfaces introduces electron- and hole-like resonances in the normal region which show up in the quasi-particle spectrum. These resonances have strong implications for the critical supercurrent IcI_c which we find to be determined by the lowest quasi-particle level: tuning the potential ÎŒx0\mu_{x0} to the points where electron- and hole-like resonances cross, we find sharp peaks in IcI_{\rm c}, resulting in a transitor effect. We compare the performance of this Resonant Josephson-Transistor (RJT) with that of a Superconducting Single Electron Transistor (SSET).Comment: to appear in PRB, 11 pages, 9 figure

    Electronic transport through domain walls in ferromagnetic nanowires: Co-existence of adiabatic and non-adiabatic spin dynamics

    Full text link
    We study the effect of a domain wall on the electronic transport in ferromagnetic quantum wires. Due to the transverse confinement, conduction channels arise. In the presence of a domain wall, spin up and spin down electrons in these channels become coupled. For very short domain walls or at high longitudinal kinetic energy, this coupling is weak, leads to very few spin flips, and a perturbative treatment is possible. For very long domain wall structures, the spin follows adiabatically the local magnetization orientation, suppressing the effect of the domain wall on the total transmission, but reversing the spin of the electrons. In the intermediate regime, we numerically investigate the spin-dependent transport behavior for different shapes of the domain wall. We find that the knowledge of the precise shape of the domain wall is not crucial for determining the qualitative behavior. For parameters appropriate for experiments, electrons with low longitudinal energy are transmitted adiabatically while the electrons at high longitudinal energy are essentially unaffected by the domain wall. Taking this co-existence of different regimes into account is important for the understanding of recent experiments.Comment: 10 pages, 6 figure

    Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field

    Full text link
    We have studied the quantum transport in a narrow constriction acted upon by a finite-range longitudinally polarized time-dependent electric field. The electric field induces coherent inelastic scatterings which involve both intra-subband and inter-sideband transitions. Subsequently, the dc conductance G is found to exhibit suppressed features. These features are recognized as the quasi-bound-state (QBS) features which are associated with electrons making transitions to the vicinity of a subband bottom, of which the density of states is singular. Having valley-like instead of dip-like structures, these QBS features are different from the G characteristics for constrictions acted upon by a finite-range time-modulated potential. In addition, the subband bottoms in the time-dependent electric field region are shifted upward by an energy proportional to the square of the electric field and inversely proportional to the square of the frequency. This effective potential barrier is originated from the square of the vector potential and it leads to the interesting field-sensitive QBS features. An experimental set-up is proposed for the observation of these features.Comment: 8 pages, 4 figure

    Magnetic field influence on the proximity effect in semiconductor - superconductor hybrid structures and their thermal conductance

    Get PDF
    We show that a magnetic field can influnce the proximity effect in NS junctions via diamagnetic screening current flowing in the superconductor. Using ballistic quasi-one-dimensional (Q1D) electron channels as an example, we show that the supercurrent flow shifts the proximity-induced minigap in the excitation spectrum of a Q1D system from the Fermi level to higher quasiparticle energies. Thermal conductance of a Q1D channel (normalized by that of a normal Q1D ballistic system) is predicted to manifest such a spectral feature as a nonmonotonic behavior at temperatures corresponding to the energy of excitation into the gapful part of the spectrum.Comment: 5 pages, 3 figures, revised version with a new titl
    • 

    corecore