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Momentum noise in a quantum point contact
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Ballistic electrons flowing thiough a constiiction can transfer momentum to the lattice and excite a vibration
of a free-standing conductor We show (both numerically and analytically) that the electromechanical noise
power P does not vamsh on the plateaus of quantized conductance — 1n contrast to the current noise The
dependence of P on the constriction width can be oscillatory or stepwise, depending on the geometry The
stepwise 1ncrease amounts to an approximate quantization of momentum noise
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Not long after the discovery of conductance quantization
1 a ballistic constiiction® 1t was predicted that the quantiza-
tion 1s noiseless > The time dependent current fluctuations
should vanish at low temperatutes on the plateaus of quan-
tized conductance and they should peak in the tiansition
from one plateau to the next The conclusive experimental
vertfication of this piediction followed many years later,?
delayed by the difficulty of eliminating extraneous sources of
noise The notion of noiseless quantum ballistic transport 1s
now well established *

The otigin of noiseless transpoit lies m the fact that the
eigenvalues 7T, of the transmission matiix product #7 take
only the values 0 o1 1 on a conductance plateau The cuitent
noise power at zeto temperatwe P,x> T,(1—T,) then
vanishes ° In other words, cuirent fluctuations 1equire pai-
tially filled scattering channels, which are incompatible with
a quantized conductance

In this paper we pomt out that the notion of noiseless
quantum ballistic transpoit does not apply if one consideis
momentum transfer mstead of charge tiansfer Momentum
noise cieated by an electiical cunient (socalled electiome-
chanical nose) has been studied 1n the tunneling 1egime® and
m a diffusive conductor,’” but not yet 1n connection with bal-
listic ttansport Our analysis 1s based on a recent scattering
matrix repiesentation of the momentum noise power P, ac-
cotding to which P depends not only on the trtansmission
eigenvalues but also on the eigenvectors ® This makes 1t pos-
sible for the elections to generate noise even in the absence
of partially filled scatteting channels

The geometiy 1s shown schematically m Fig I We con-
sider a two-dimensional election gas channel in the x-y
plane The width of the channel n the y duection 1s W and
the length mn the x direction 1s L The channel contains a
nattow constiiction of length SL<L and width SW<W lo-
cated at a distance L' fiom the left end (We choose x=0 at
the muddle of the constiiction, so that the channel extends
fiom —L'<x<<L—L’ ) A voltage V drives a curient thiough
the constriction, exciting a vibiation of the channel We seek
the low-frequency noise powet

P=2fy dt SF(0)8F (1) = hm%AP(r)2 )

psor

of the fluctuating foice SF(t)=F(t)—F that ditves the vi-
bration The noise power 15 propottional to the vanance of
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the momentum A7P(¢) transferted by the electrons to the
channel 1n a long time ¢

We assume that the election gas 1s deposited on top of a
doubly clamped beam extended along the x axis and free to
vibiate 1n the y duection The solution of the wave equation

18 u(r,t)= ﬁu(x)cos wt, with @ the mode fiequency and
u(x) the mode piofile Both « and du/dx vanish at the ends
of the beam and u(x) 1s noimalized such that 1t equals to 1 at
the point xq at which the amplitude 1s measued 7 We choose
xo=0 so that F corresponds to a point foice at the location of
the constiiction
The wave functions aie 1epresented by scattering states

The incident wave has the form ¢ (1)
=|tk,/m" | Pexp(k)P,(y), wheie m* 15 the effective
mass, n=1,2, , N 1s the mode index, &, the transveise
wave function, and k,=*(2m*/A*)*(Ez—E,)"* the lon-
gitudmal wave vector (at Fetmu eneigy E, laiger than the
cutoff energy E,) We take k, positive to the left and nega-
tive to the 1ight of the constuiction Incident and outgoing
waves are related by the 2N X2N unitary scattermg matiix

rot'
)

i

contamimg the NXN transmussion and 1eflection matrices
t,t',r,r’ We assume time reversal symmetry, so that &, 1s
1eal and S 1s symmettic

As derived m Ref §&, the noise power P and the mean

force F for a localized scatterer can be expressed 1 terms of

the matux § and a Hermitian matnix M,
-« L >
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W
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FIG | Schemauc diagiam of a two-dimensional channel con
taining a constitction
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=m* 713 5(n|p qu «pPgln') of expectation values in the ba-
sis of incident modes. The expectation value is taken of the
electron momentum flux m* " !p p g, weighted by the strain
tensor u, =5 (i o/ dx g+ dugldx,). The matrix M 1s block

diagonal,
(ML 0 3
M=l My 3

At zero temperature and to first order in the voltage one has,
for a twofold spin degeneracy,

I S
P—TTl(rr ME Y TME+r T TMEttTMEs
=2tr"MEFrtt M), 4)
_ 2eV . ;
F= TTr(ML+rr'Mf+nTMI;)_ (5)

In Eq. (5} we have not included the equilibrium contribution
to the mean force (at V=0). Electron-electron interactions
(screening) are not accounted for, since we do not expect any
appreciable charge accumulation in a ballistic system.

For a transverse vibration the blocks M1 ,My have ele-
ments

My e T hn) [ g )f dxu’ (x)

nm = n m XU \x

LR g 2] IR ]y
Xexp[ix(k/n_kz1)]' (6)

The integral over x extends over the region (—L',— 6L/2) to
the left of the constriction for M; and over the region
(OL/2,L—L") to the right of the constriction for M. We
abbreviate q,,,,=k,,—k, . For |n—m| of order unity one has
q.m of order 1/W, so that the range of x that contributes to
the integral is of order W. [Contributions from inside the
constriction are smaller by a factor min( §W, SL)/W.] Since
W is much greater than the Fermi wave length A, we are
justified in using the asymptotic plane wave form of the scat-
tering states to calculate M.

We take hard-wall boundary conditions at y=0,W, hence
®,(y)=2/W)Y sm(nmy/W), E,=(h*2m*)(nw/W)?, N
=[2W/Ng], and (k,+k,)qum=(m/W)2(n?—m?). The
overlap fydy ®,®), 1s evaluated straightforwardly, but the
integration over x requures more care. The denvative u’ (x)
=dul/dx of the mode profile vanishes at the two clamped
ends of the beam, as well as at its center. We assume that the
constriction is off-center, therefore u’(+ SL/2)=~u'(0)#0.
We write u’(0)=uy/L, with uy a number of order unity.
Upon partial integration we find, to first order m W/L,

Ug

f dxu'(x)exp(1xq )= = exp(+1q,,,0L/2)
LR

—iqlllﬂL
+O(W/L)?. N
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FIG. 2 Solid lines: noise power P for transverse vibration ver-
sus width of constriction W, at fixed width W=49.9 A of the
wide channel. The left panels are for a short constriction with and
without axial symmetry. The right panels are the corresponding re-
sults for a long constriction. The dotted lIine 1s the current noise P;
in umts of ¢*V/h (which 1s nearly the same with and without axial
symmetry).

{The upper sign is for region L, the lower sign for region R.)
We thus arrive at M| =—Mz=M, with

2hWuyg nm(k,+k,)?
nm= T 5. \Opm™—
' L (n2—m?)?|k,k,,| "
xexpli (k| =[ky| ) SLI2]. (8

The symbol o, =3[1+(—1)"""] selects indices of the
same parity, so that M, =0 if n and m are both even or both
odd.

Our constriction has left-right symmetry, so r=r' and ¢
=¢'. We contrast the case W' =3 W of axial symmetry with
the case W' <3 W of a constriction placed highly off-axis.
We also contrast the short-constriction case SL<W (point
contact geometry) with the long-constriction case SL» W
(microbridge geometry). The reflection and transmission ma-
trices are calculated by matching wave-function modes at x
=+ 5L/2, cf. Ref. 9.

In Fig. 2 we show the dependence of the transverse noise
power P [in units of Py=(4eV/h)(Nugh/L)?] on the width
SW of the constriction, at fixed width W of the wide channel.
(We choose W=49.9 A, so N=99.) The average trans-

verse force F is shown i Fig. 3, normalized by F,

=(2eV/h)(Nughi/L). (Note that F=0 for the axially symmet-
ric case.) The conductance G = (2@2/ W) Tri¢' and the current
noise P;= (4€3V/W)Tree' (1 — 111y are included in these plots
for comparison.

The plots show a remarkably varied behavior: For the
short constriction without axial symmetry the notse power P
of the transverse force oscillates as a function of the constric-
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FIG 3 Solid lines average transverse force as a function of
constriction width, 1n the absence of axial symmetry (positive val-
ues point 1n the positive y direction in the geometry of Fig 1, for a
current flowing 1n the positive x direction) The left and right panels
are for a short and long constriction, respectively The conductance
of the constriction 1s shown as a dotted line. The average transverse
force 1s 1dentically zero for the axially symmetric geometry (W'
=W/2)

tion width 6W, 1n much the same way as the current noise
power P, oscillates.>> However, the minima in P do not go
to zero like the minima in P;. demonstrating nonzero mo-
mentum noise on the plateaus of quantized conductance. If
the short constriction is precisely at the center of the channel,
P increases nearly monotonically with §W. For a long con-
striction P increases nearly monotonically regardless of
whether there is axial symmetry or not. The increase of the
noise power is stepwise, reminiscent of the conductance.
(The current noise in the long constriction remams oscilla-
tory.) The mean transverse force behaves similarly to the
conductance for the short constriction, but fluctuates around
zero for the long constriction.

In order to explain the approximate quantization of mo-
mentum noise in analytical terms it is convenient to decom-
pose the (symmetric) transmission matrix as ¢,
=E,,rUm11Um,,/\/—T,7, where U is an NXN unitary matrix
and T, e[0,1] is the transmission eigenvalue (eigenvalue of
tt7). Similarly, the reflection matrix 1s decomposed as r,,
=iZ, U, Up N1 =T, In this representation Eq. (4)
takes the form

8eV
p= _]’l_ 2 |an|2{(l_TJZ)T/11+[TH(1 _T”)T’”

X(1-T,)1"%, x=UtmM*U. 9)

The matrix M couples only mode indices of different parity,
cf. Eq. (8). The presence or absence of axial symmetry mani-
fests itself in the matrix U, which couples only indices of the
same parity if W'=W/2. In this axially symmetric case
X,m=0 if n,m have the same parity.

In a simple model'® of a long and narrow ballistic micro-
bridge, U is a random matrix while the tiansmission eigen-
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values take on ounly two values: T,=1 for l=<n=4N and
T,=0 for SN<n<N. The number SN=[26W/\z] 1s the
quantized conductance of the constriction (in units of
2e*/h). Averages of U over the unitary group introduce Kro-
necker delta’s (cf. App. B in Ref. 10). We need the average

‘Q’pp’qq’nmE < U;n U;;:m Up’qu’n>’ giVCH by
1 .
QP,D'(Iq’nm:m 5P(1'6(]P'—N5PP'5(](7’ if 1175171,
(10)
in the case of broken axial symmetry and
Q’pp’qq’nm: 2 5})(]’5[][1'0—1"‘10—(17" lf 0'1””:0,
N-— TN
(11)

in the axially symmetric case.
Substituting these values of T, into Eq. (9) and averaging
over U with the help of Egs. (10} and (11), we find

gey N 0 % 0 vt
h n=6N+1 m=1 pplag' =1 ppiaqiam T pp! TR atg
8eV ON . SN S 7725 b s

T W\ T Mg o e VAN

(12)

regardless of whether axial symmetry is present or not. We
thus obtain a stepwise increase of P as a function of SW with
step height AP =(m?/9)P,. The numerically obtained step
height in Fig. 2 agrees within 10% with the analytical esti-
mate for the first step. For subsequent steps the agreement
becomes worse, presumably because the approximation of a
uniform distribution of U breaks down as 6W increases. We
can also calculate the mean transverse force in the same way,

08 | T I T | T 08 I T [ T I T
6L=002 W SL=10W
W'=W/2 W=W/2
06 - o6 =
1) . e - -
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FIG 4. Noise power for longitudinal vibration of a short con-
striction (left panel) and a long constriction (right panel) These
plots are for W' = W/2, but theie 1s no noticeable dependence on the
tatio W'/W The mean longitudinal force (not shown) decreases
stepwise as a function of SW m both the short and long constric-
tion.
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starting fiom Eq (5), and find F«TrM =0, m accordance

with the numerical 1esult that F<€ F, for a long constiiction

In the short-constiiction case SL<€W we may not tieat U
as unifoimly distitbuted in the unitary group, and this has
prevented us from finding a simple analytical 1epresentation
of the numetical data

This rich geometry dependence of the noise power is
characteristic for a transverse vibiation For comparison we
discuss the case of a longitudinal vibiation, corresponding to

a mode profile xu(x) oriented along the direction of the cur-
1ent through the constriction (mstead of perpendicular to 1t)
Such a longitudinal vibration coriesponds to a compression
mode of the beam, which 1s at a higher fiequency than the
bending mode excited by a transverse vibration For a longi-
tudinal vibration the matrices My, Mp are diagonal
(M1) pm=—(MR) = Snm fi lknl u(0) We take u(0)=1
The noise power 1s plotted 1 Fig 4 for both a long and a
short constriction It does not depend on the presence o1
absence of axial symmetiy and 1s also rather insensitive to
the length of the constiiction The oider of magnitude of the
longitudinal noise power 1s (4e V//z)p%, with pp="Hfkg the
Fermi momentum This 1s larger than the typical transveise
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notse power Py by a factor of order (kgL/N)*=(L/W)?
Inserting parameters V=1 mV, kp=10® m~!, typical for a
two-dimensional electron gas, one estimates (4eV/h) p%
=074 N?/Hz This 15 below the force sensitivity of present
day nanomechanical oscillators, but 1s hoped to be 1eached
futwre generations of these devices 1

In summary, we have demonstrated that the momentum
noise of ballistic electrons does not vanish on the plateaus of
quantized conductance Conductance quantization 1equires
absence of backscattering in the constiiction, but 1t does not
preclude mter-mode scattering Momentum noise makes this
intet-mode scattering visible 1 a way that current noise can
not The dependence of the momentum noise on the constiic-
tion width was found to be remarkably varied, ranging fiom
oscillatory to stepwise, depending on the direction of the
vibration (longitudinal or transverse to the constiiction), the
presence o1 absence of axial symmetty, and the length of the
constriction The stepwise increase amounts to a quantum of
momentum noise that might be observable with an ultiasen-
sitive oscillator
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