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Magnetic field influence on the proximity effect in semiconductor-superconductor
hybrid structures and their thermal conductance
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We show that a magnetic field can influence the proximity effect in NS junctions via diamagnetic screening
current flowing in the superconductor. Using ballistic quasi-one-dimensi@tHD) electron channels as an
example, we show that the supercurrent flow shifts the proximity-induced minigap in the excitation spectrum
of a Q1D system from the Fermi level to higher quasiparticle energies. Thermal conductance of a Q1D channel
(normalized by that of a normal Q1D ballistic systeim predicted to manifest such a spectral feature as a
nonmonotonic behavior at temperatures corresponding to the energy of excitation into the gapful part of the
spectrum.
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The superconducting proximity effect is a mesoscopichence the ideal condition for them to retrace the same geo-
scale phenomenon, which consists of the penetration and coetrical path is violated. As the orbital effect of the magnetic
herent propagation of Cooper pairs from a superconductdield on the normal metal or semiconductor side of the sys-
(S) into a normal metalN). The Cooper pair transfer into the tem is weak, the influence via diamagnetic screening may be
normal metal can be equivalently described as an Andreethe major factor of magnetic field influence on the supercon-
reflection processwhich consists of electrofwith momen-  ducting proximity effect. _ _
tum p) conversion into the Fermi sea hdwith momentum Below, we analyze the influence of diamagnetic supercur-
—p) at the NS interface. The interference between an eled€Nt in the system where the latter would be the only way a
tron and the Andreev reflected hole imposes a minigap ontg'@gnetic field might affect the proximity effect: a ballistic

the spectrum of quasiparticle excitation near the Fermi Ieve?ne'd'm.enSIonaI ponductor connecte'd. in parallel to a super-
in the normal part of such a hybrid structdréhus giving conducting bulkFig. 1(@)]. To be specific, we model such a

rise to pronounced features in it§V) characteristics® and conductor as a guasi-one-dimensiof@1D) channel formed

: . . - near the edge of a 2D electron gas in a heterostructuse (
thermoelectric properti€s Studies of the proximity effect plane with the side contact to a superconducting film, by

have recently been made in various combinations of mate“depleting the 2D gas using a split top gate, and subjected to

als, including junctions between superconductors and semiy \veak magnetic fiel®=(0:;0:B). We show that the spec-

conductor structuréssupporting a two-dimensional electron trum of low-energy quasiparticle excitiation in such a hybrid

gas. In the case of electrons in a semicopd_uctor structurgystem has the minigap displaced with respect to the Fermi
weakly coupled to a superconductor, the minigap value disteye| to higher energies,

cussed in the literatuf is much smaller than that of the

“mother” gap in the supercond_uctor, b.o_th dge to the mis- s, =vellXsgnp—ae,+ \/vﬁ(lpl—pp)2+E§, 1)

match vp<vg between Fermi velocities in the two-

dimensional gagve=(2Ex/m)*?] and a superconducting reflecting the fact that Cooper pairs in the channel are forced

metal ¢s), and also due to a possible Schottky barrier bednto the flow while tunneling from the bulk of the supercon-

tween them, with transparendy~e~?¥* (dependent on the ductor(where they are formed of two electrons with exactly

length\ of electron penetration into the barrier of the thick- opposite momenjaacross the region of penetration of the

nessa), Eqg~(ve/vg) OEE<A. magnetic field.[The Zeeman splitting effect is also taken
It has been noticed that the electron-hole interferences anghre of by the ternae, (« is the spin projectionin Eq. (1)].

the SN proximity effect in hybride structures survive atAs a result, each of the two electrons acquires the momen-

higher magnetic fields than the weak localization—anothetum shift

quantum interference effett® This has been understood as

a consequence of the fact that the interfering electron and eBo L

Andreev-reflected hole retrace the same geometrical path in I1= Ttanhzs @

the normal metal, thus hardly encircling any magnetic flux.

Therefore, another mechanism of magnetic field influence ogaused by the Lorentz force and equal to the difference be-

the superconducting proximity needs to be taken into actween the vector potenti#d{=(0,A,0) deep inside the super-

count, via a screening diamagnetic supercurrent on the S-sid®nductor, A=0, and, at its surfaceA=Bdtanh({/26),

of the hybrid structure. Since Andreev reflection takes placevhere § and L stand for the London penetration depth and

at the NS interface, where Cooper pairs flow, the incominghe superconductor film thickness, respectively. The spec-

electron and the hole reflected by a moving condensate dfum described by Eq.l) can also be understood as one of

Cooper pairs would be slightly shifted in momentum spacethe Bogolubov quasiparticles in the laboratory frame, where
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a) ductor electron layers in semiconductdrdio be specific, we de-
Supercon U ] ®Q1D scribe the Q1D confinemeigprovided by a gateby the 2D
AF Y electron wave functionp(x) localized in thex direction,
| ru whose magnitude at the interface can be estimated from the
= A /?(x) boundary conditionp(0)=Ad,¢(0), with \ standing for the
R electron penetration length into the barrier. The Fermi mo-
-a-1L -a 0 X mentum of the Q1D systeme and 3D electron density on
the semiconductor side are assumed to be much smaller than
7 those in the superconductor, and we also take the tunneling
Superconductor coefficient 6~exp(—2a/\) as a small parameter. These as-
sumptions enable us to neglect the influence of the normal

y system on the superconductor and to investigate the proxim-
=]
o

b)

.

ity effect in the Q1D system without feedback.
In the presence of a magnetic fiedd=(0;0;B) it is con-
venient to choose the vector potential to be parallel to the
interface A(x) =[0,A(x),0] in order to deal with a real order
parameter in the superconductor. The vector potedAt{al)
I acting on the normal electrons must be found self-
— L !

1

>,
—
>

YV consistently, taking into account the screening of the external
s magnetic field by a diamagnetic supercurrent Inside the

o superconductof(x) can be found from the London equation
FIG. 1. () Schematic view of a superconductor/Q1D systemyith the boundary conditions,A(—a)=B and &,A(—a
junction. (b) Vector potential profile. —L)=B as follows:

—a

the equilibrium conditions are set by the heat reservoirs, for ,
the condensate moving along the Q1D channel with the drift A(x)= B@s|nr[(x+a+ L12)/é]
velocity IT/m (m is the effective electron in the semiconduc- cosh(L/25)
tor). According to Eq.(1) the minigap is removed from the
Fermi level when the field reaches the value It is antisymmetric with respect to the middle of the super-
conductorA(x=—a—L/2)=0 [Fig. 1(b)]. SinceA(x) must
) L\ 0EF be continuous at the surface of the superconductor-a,
B*~ Bclg CO“’( 2—5) 7 <Ba. (3 in the semiconductox=—a it varies asA(x)=B(x+a)
+Bdétanh(/26). The width of the electronic wave function
whereB,; and¢ are the first critical field and the coherence in the Q1D channelx~kg* and the barrier thicknessare
length in the superconductor. both much less thah or §; therefore, the vector potential
The removal of a minigap from the Fermi level caused byacting on the Q1D electrons is virtually a constaA{x)
a magnetic field would manifest itself in the transport prop-~A(—a) =B tanh({./25), which will be used below to de-
erties of a hybrid sytem, such as the electron-mediated he@armine the quasiparticle spectrum in the channel.

t_ransfer. The ballistic quasiparticle spectrum in Ek.gives We describe superconducting correlations in the Q1D
rise to the thermal conductance channel using a pair of coupled equations f@g(t)
R T
3 w x2dx =(¢‘”“p((?)) and ¢g(t)=($"p(t()t))—creation and annihilation
KT8k 3 | Caw ey o
A2 T J(Egrvpn)ikgT X operators:
cosﬁz
. (p+11)? .

where ky(T)=mk3T/3# is the conductance of a normal |ifidy— == ——F0sez+Ee |#p(1)

quantum ballistic wiré® At a zero magnetic field, the tem-
perature dependence of is activational, k(T<Ey/kg) o , A e A

«e Eo’keT whereas at high fields, when there is no gap at =7 f dU[G(L, ) (1) + F* (1, )i o ()],
the Fermi energyx(T,B) = k\(T). The crossover from low
to high fields takes place &* [Eq. (3)] and reflects the

= : > < . (—p+II)? -
presence of a minigaf, in the quasiparticle spectrum at — it~ +ose,+Ex |0 (1)
finite excitation energies. This results in a nonmonotonic 2m P
temperature and magnetic field dependence of the ratio
k(T,B) kn(T). =191’2J dt'[F(t,t)iohy(t')+G* (t,t) gl (1],
The analysis of the quasiparticle spectrum formed due to
multiple Andreev reflections in this paper is based on the (5)

standard weak-coupling approach to the proximity effect de-
scription in superconductor junctions with normal metals andvhere
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2 a)B<B' g

ﬁ2¢(0) 2 ( hzkglz

ﬁ_(ms)\ expa/\) mexp(a/\) \/ \/
characterizes the tunneling coupling to the superconductor -+Eg — VeIl | By + v, t Py
and the electron momentum shift in the magnetic filld 4 /\
is related to the vector potential by E@). In Eq. (5), /\ _
G(t,t')=G(x=—a,x'=—at—t’) and F(t,t')=F(x &
=—a,x'=—a,t—t") are the normal and anomalous Green 5 B> B et
functions of the superconductor at its boundary;and o5 \,/
are Pauli matricesd! is transposed to). Since the size of
the Fermi sea in the semiconductor wire is much smaller \ A E, +vI1 I/\ P,
than in the superconductor, one can ignore the dependence of I E, / \
G and F on the momentum parallel to the interface: only F K
electrons in the superconductor moving nearly perpendicu- /\ €
larly to the interface can tunnel into the Q1D wire. Since we

are |r_1terested in the Iow-tempgr_ature regikd ~E4<A, FIG. 2. Schematic view of the quasiparticle spectrum described
we will neglect the terms containing the normal Green func—by Eq. (1)

tion G in Egs. (5). For the chosen gauge, the anomalous o
Green function of the superconductér,in Egs.(5) has no be found from the continuity equationd,j(yt)
phase factors, despite the presence of a magnetic field. For=a— d,p(yt), where the density of energy.(yt) corre-
weak fieldB<B,,, its time Fourier transform can be esti- sponding to the equations of motidh) is

mated asF(e)~L 'S, A/(A*~€’+n; ), with 7, being L 2

the normal electron dlsperS|on near the Fermi level in the , (yt)= E (4, (yt)| ——— ( )
superconductor. The integration over the perpendicular mo-

mentump, gives F(e)~A/hvg(A%—€?)Y? thus giving us

the minigapEy= dF(e=0) mentioned in the introduction —Egiog Yt (yt)zij(yt)—i-H.C.), (7)
and obtained in earlier publicatiofs. “ “

The solution of Eqs(5) for e<A is given by the Bogol- \yhere t/fa(yt)=Ly_1’22p¢a(t)eXp6py/ﬁ) with L, being the

ubov transformation of the forms length of the Q1D system, anu= —ifdy,. Using the Bogo
lubov transformatior{6) for #,(t), for the density of energy

_QSZ_EFL&Q(VU

Yeap() = Upbpexp( —itel /fi) +ios  “vpb’

Temp one finds
Xexp—ite,/f), (6) QY (p' —p) i i
pelyt)= E/ BT {vpvpr(€qp T €0p)
U2_ UF(|p|_pF) app y
p__ ]
2 [vE(pl - pp)®+EZ]Y? Xb_, bl o€ (t/A) (e 4 ~ap) 4+ Uy
2__ 2 — (i —
Up—l_up, X(E:p,'i‘E:;p)prbapre (It/ﬁ)(eap' eap)
whereb,, and b_a p are Bogolubovs quasiparticle opera- +upvp,i0'§’_a(6;:p+ € )
tors, and the excitation spectrum;p is given by Eq.(1) pf
(see Fig. 2 The Zeeman term in Eql) turns out to be sz bt ,e(“’ﬁ)(f;p‘%p/)wLvpup,i02_“'“
much smaller than the orbital orte, /v I1~g/kgemin(s,L) P
<1—unless the electron g-factor is anomalously large. X (€t e )b, oPap e(it/ﬁ)(e;p—ezp,)}_ (8)
ap’/ ¥~

Due to the motion of the Q1D condensate the excitation
energy curve is tilted by energyelIl sgnp. The fieldB*  In order to satisfy the continuity equation with(yt) given
[Eq. (3)] at which the minigap is removed from the Fermi Py Ed.(8) the energy current(yt) must have the following
level is determined by the condition thatII=Eg. Note form:
that at higher field8* <B<B,,, the quasiparticle spectrum

iviE)(p' — — \2_ (.2
remains gapful, with the center of the gap moved to energies i (yt)= E ey ) -~ ,(fap') (€ap)
NEQ' . ‘ app’ 2Ly PrP p’_p
Now we turn to the calculation of the thermal conduc- -
tancex(T,B) of a long Q1D channel whose ends are kept at X bfa?pbfaip,e*“t/ﬁ)(eapfe;puupup,
temperature§ andT+AT (AT<T). Since no heat can get
into the strongly gaped superconductor, the middle of the (e;p,)Z—(e;p)z .
wire represents a bottleneck for the heat transport, so that we X,—bT bopre )€ =€)
can analyzex(T,B) in the infinite wire geometry. The ex- p=p
pression for the energy current operaggyt) in a wire can 9
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In Eg. (9) we have already omitted the terms containing a) KK
bzpbiafp, andb_,_,b,, which vanish after the averag- 1 D
ing. The averaged value of the energy curjentan be writ- c
ten as the sum of two contributions: 05
- -1 + + 02
je=—h % f dpe,pdp€aplpTiq- (10 B o\ k,TEE,
0
The first of them can be attributed to the supercurrent flow 0.5 L
and cannot transfer heat, whergggepresents the heat cur- b) . L
rent: C
jq=h712 f dpezp&pe;pn(ezp). (11 0.5
“« B
The latter is determined by the energy distributiamss;rp) A B/B
and the group velocitydpe:;p of quasiparticles. We express 0 1 > 3 P 5

the energy currentd 0) and(11) in terms of the “+-"-branch
of the spectrungl) using the relationshig,,,= — Etafp and FIG. 3. (a) Temperature dependence of the thermal conductance,
the symmetry of the limits in the sum. The distribution func- « normalized by that of a normal wirey for different values of

H 1 . * * — *
tions of rightmovers {pe,,s>0) and leftmovers dpe,, magnetic field: (A) B/B*=0.01, (B) B/B*=0.95, (C) B/B

: : =1.05, and(D) B/B* =2. (b) Magnetic field dependence for dif-
<
01 are assumed to Ee different ar!d set bY reservows, afgrent temperaturesA) kgT/E4=0.1, (B) kgT/E4=0.3, and(C)

N(€,p, T+AT) andn(e,,,T), respectively. Using this, we KaT/E.—1
determine the thermal conductane€rl,B) given by Eq.(4) BlTe ™

as the proportionality coefficient between the heat current
and the temperature drop,= «(T,B)AT.

Fig. 3@ shows the thermal conductant® normalized
by that of a normal wire as a function kET/E for different
values of the magnetic field. Plét is related toB=0 and
shows how the conductance exponentially decreases at te
peratures smaller than the minigép. CurvesB andC show
what happens when the field crosses the valud®f at
which the edge of the minigap is about to reach the Ferm
level. ForB<B* (curve B), «(T)/kn(T) is exponentially
small only ifkgT<Eg—vell<E4. When the temperature is
in the interval E;—vell<kgT<Eg+uvell, quasiparticles
with negative momenta~ — pg transfer heat, whereas the
states with positivg are still unpopulated. This interval cor-
responds to the plato in cunBwhere the conductancg T)
is half of that in the normal state. At higher temperatures, The authors thank U. Zulicke, I. Aleiner, and A. Geim for
kgT>E4+vell the asymmetry of the excitation spectrum no useful discussions. This work was funded in parts by EPSRC

When the field exceed®* (curvesC andD), the depen-
dencex(T)/kn(T) becomes nonmonotonic. As in a normal
wire, at low temperaturelsg T<v eIl — E4 there are two left-
moving and two right-moving modes capable of tranferring
rHeat, which gives«(T)=«n(T). At intermediate tempera-
turesv eIl - E;<kgT<Ey+vell, only the states with nega-
}ive momenta contribute to the thermal conductanegr)
= kn(T)/2. At higher temperatures the conductance recovers
a normal metallic behavior. Finally, wheB=B* the mini-
mum in «(T)/«xy(T) is less pronounced and the heat con-
ductance behavior becomes indistinguishable from that of a
normal wire. The magnetic field dependence wfcy is
given in Fig. 3b).
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