50 research outputs found

    The perceptions of nurse educators regarding the use of high-fidelity simulation in nursing education at a South African private nursing college

    Get PDF
    Although Nurse Educators are aware of the advantages of simulation-based training, some still feel uncomfortable to use technology or lack the motivation to learn how to use the technology. The aging population of nurse educators cause frustration and anxiety. They struggle with how to include these tools, particularly in the light of faculty shortages. Nursing education programmes are increasingly adopting simulation in both undergraduate and graduate curricula. Scoping literature reviews show that nursing practice has changed in recent years, placing demands on nurse educators to utilise different approaches in education. The fact that nurse educators are an aging population needs to be taken into consideration and acknowledge that many of them did not grow up with computers and lag behind in technological skills. The aim of this study was to investigate the perceptions of nurse educators regarding the use of high-fidelity simulation in nursing education at a South African Private Nursing College in order to be able to determine why High-fidelity Simulators (HFS) have not yet been embraced by nurse educators and students. A national survey of nurse educators and clinical training specialists was completed with 128 participants; but only 79 completed the survey. In addition to background information, participants were questioned about their use of simulators. They were asked to complete the Technology Readiness Index. Information was also obtained regarding their perceptions of the use of HFS. Findings included indications that everyone is at the same level as far as technology readiness is concerned; this, however, does not play a large role in the use of HFS. This finding supports the educators’ need for training to adequately prepare them to use simulation equipment. Recommendations for further study include research to determine what other factors play a role in the use of HFS, studies to determine whether the benefits of HFS are superior to other teaching strategies warranting the time and financial commitment. The results of this study can be used as guidelines for other institutions to prepare their teaching staff for the use of HFS

    Planktonic algae and cyanoprokaryotes as indicators of ecosystem quality in the Mooi River system in the North-West Province, South Africa

    Get PDF
    An ecologically healthy Mooi River system is important for maintaining the quality of potable water of Potchefstroom and surrounding areas. However, this system is under constant threat from anthropogenic pollution arising from both agricultural and mining activities in its catchment. A survey of planktonic algal and cyanoprokaryote assemblages in Klerkskraal, Boskop and Potchefstroom reservoirs was undertaken during 1999–2000 and 2010–2011. In all three dams, total algal and cyanoprokaryote concentrations were lower during the second survey (2010–2011), suggesting an improvement in ecosystem health. However, results also show a change from a Chrysophyceae-dominated community to one dominated by Bacillariophyceae. Increased numbers of diatom species that usually occur in eutrophic impoundments (Melosira varians, Cyclotella meneghiniana and Aulacoseira granulata) indicate an increase in the trophic status of the reservoirs, especially that of Boskop Dam, a trend mirrored by increases in conductivity as well as phosphorus and ammonium concentrations in all three reservoirs. It can therefore be concluded that although the ecosystem health of the Mooi River system is currently still good, further increases in nutrients such as phosphorus can cause proliferation of problem species (detected in enrichment cultures) and a deterioration of its water quality.Keywords: Mooi River reservoirs, algal communities, cyanoprokaryotes, water qualit

    Assessing introgressive hybridization in roan antelope (Hippotragus equinus):Lessons from South Africa

    Get PDF
    Biological diversity is being lost at unprecedented rates, with genetic admixture and introgression presenting major threats to biodiversity. Our ability to accurately identify introgression is critical to manage species, obtain insights into evolutionary processes, and ultimately contribute to the Aichi Targets developed under the Convention on Biological Diversity. The current study concerns roan antelope, the second largest antelope in Africa. Despite their large size, these antelope are sensitive to habitat disturbance and interspecific competition, leading to the species being listed as Least Concern but with decreasing population trends, and as extinct over parts of its range. Molecular research identified the presence of two evolutionary significant units across their sub-Saharan range, corresponding to a West African lineage and a second larger group which includes animals from East, Central and Southern Africa. Within South Africa, one of the remaining bastions with increasing population sizes, there are a number of West African roan antelope populations on private farms, and concerns are that these animals hybridize with roan that naturally occur in the southern African region. We used a suite of 27 microsatellite markers to conduct admixture analysis. Our results indicate evidence of hybridization, with our developed tests using a simulated dataset being able to accurately identify F1, F2 and non-admixed individuals at threshold values of qi > 0.80 and qi > 0.85. However, further backcrosses were not always detectable with backcrossed-Western roan individuals (46.7-60%), backcrossed-East, Central and Southern African roan individuals (28.3-45%) and double backcrossed (83.3-98.3%) being incorrectly classified as non-admixed. Our study is the first to confirm ongoing hybridization in this within this iconic African antelope, and we provide recommendations for the future conservation and management of this species

    The effect of sport specific exercises on the visual skills of rugby players

    Get PDF
    INTRODUCTION: Visual performance is an important factor in sport excellence. Visual involvement in a sport varies according to environmental demands associated with that sport. These environmental demands are matched by a task specific motor response. The purpose of this study was to determine if sport specific exercises will improve the visual performance of male rugby players, in order to achieve maximal results on the sports field. MATERIALS AND METHODS: Twenty six adult male rugby players, aged 16-22, were chosen as subjects. In order to evaluate the effect of sport specific exercises on visual skills, a pre-test - post-test experimental group design was adopted for the study. RESULTS: Significant differences (p≤0.05) were seen in the focussing, tracking, vergence, sequencing, eye-hand coordination and visualisation components Discussion & Conclusions: Sport specific exercises improved visual skills in rugby players which may provide them with an advantage over their opponents. This study suggests that these training programs and participation in regular on-line EyeDrills sports vision exercises (www.eyedrills.co.za) aimed at improving the athlete’s visual co-ordination, concentration, focus, hand-eye co-ordination, anticipation and motor response should be incorpotated in the rugby players exercise regime. Keywords— Rugby players, sport specific exercises, visual skillshttp://www.waset.org/journals/waset/v76.ph

    A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios

    Get PDF
    To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios

    Global trends in biodiversity and ecosystem services from 1900 to 2050

    Get PDF
    Despite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity

    Структурные и оптические свойства оксида кремния, имплантированного ионами цинка: влияние степени пересыщения и термообработки

    Get PDF
    The phase-structural composition of a silica film grown on Si substrate implanted with Zn ions at room temperature with different fluences has been studied using transmission electron microscopy and electron diffraction. The small clusters (1–2 nm) and the large clusters (5–7 nm) have been formed in as-implanted silica films with the Zn concentration of 6–7 at % and 16–18 at %, respectively. Furnace annealing at 750 °С for two hours results both in the formation of the orthorhombic Zn2SiO4 phase (space group R-3) in the case of low fluence (5 · 1016 cm–2) and in the formation of the cubic ZnO phase (space group F-43m) in the case of high fluence (1 · 1017 cm–2). It has been shown that impurity loss during implantation and subsequent annealing increase with fluence of implanted ions. The fraction of Zn atoms in clusters has been estimated to be 15 % and 18 % for fluences (5 · 1016 cm–2) and (1 · 1017 cm–2), respectively. It has been shown that residual Zn impurities dissolved in silica matrix noticeably suppress the light-emitting properties of silica with embedded Zn2SiO4 and ZnO nanocrystals.Методом просвечивающей электронной микроскопии и электронной дифракции изучен фазовоструктурный состав слоев аморфного оксида кремния, имплантированного ионами цинка, в зависимости от степени пересыщения примесью. Показано, что нанокластеры малого размера (1–2 нм) формируются уже в процессе ионной имплантации при комнатной температуре при концентрации цинка 6–7 ат. %, тогда как для формирования нанокластеров размером 5–7 нм необходима концентрация цинка 16–18 ат. %. Длительный печной отжиг при 750 °C в течение 2 ч приводит к формированию кристаллической фазы ромбического Zn2SiO4 (пространственная группа симметрии R-3) в случае меньшего флюенса (5 · 1016 cм–2) и кубической фазы ZnO (пространственная группа симметрии F-43m) в случае бÓльшего флюенса (1 · 1017 cм–2). Установлено, что потери примеси при имплантации, а также в процессе термообработки увеличиваются с ростом флюенса внедряемых ионов. Проведена оценка количества атомов цинка, находящихся в кластерах после проведения отжига: 15 и 18 % для флюенсов 5 · 1016 и 1 · 1017 cм–2 соответственно. Примесь, оставшаяся в растворенном состоянии в матрице SiO2, негативно влияет на интенсивность сигнала люминесценции от пленки оксида кремния с нанокристаллами Zn2SiO4 и ZnO
    corecore