39 research outputs found

    SMART (SiMulAtion and ReconsTruction) PET:an efficient PET simulation-reconstruction tool

    Get PDF
    Background: Positron-emission tomography (PET) simulators are frequently used for development and performance evaluation of segmentation methods or quantitative uptake metrics. To date, most PET simulation tools are based on Monte Carlo simulations, which are computationally demanding. Other analytical simulation tools lack the implementation of time of flight (TOF) or resolution modelling (RM). In this study, a fast and easy-to-use PET simulation-reconstruction package, SiMulAtion and ReconsTruction (SMART)-PET, is developed and validated, which includes both TOF and RM. SMART-PET, its documentation and instructions to calibrate the tool to a specific PET/CT system are available on Zenodo.SMART-PET allows the fast generation of 3D PET images. As input, it requires one image representing the activity distribution and one representing the corresponding CT image/attenuation map. It allows the user to adjust different parameters, such as reconstruction settings (TOF/RM), noise level or scan duration. Furthermore, a random spatial shift can be included, representing patient repositioning. To evaluate the tool, simulated images were compared with real scan data of the NEMA NU 2 image quality phantom. The scan was acquired as a 60-min list-mode scan and reconstructed with and without TOF and/or RM. For every reconstruction setting, ten statistically equivalent images, representing 30, 60, 120 and 300 s scan duration, were generated. Simulated and real-scan data were compared regarding coefficient of variation in the phantom background and activity recovery coefficients (RCs) of the spheres. Furthermore, standard deviation images of each of the ten statistically equivalent images were compared.Results: SMART-PET produces images comparable to actual phantom data. The image characteristics of simulated and real PET images varied in similar ways as function of reconstruction protocols and noise levels. The change in image noise with variation of simulated TOF settings followed the theoretically expected behaviour. RC as function of sphere size agreed within 0.3-11% between simulated and actual phantom data.Conclusions: SMART-PET allows for rapid and easy simulation of PET data. The user can change various acquisition and reconstruction settings (including RM and TOF) and noise levels. The images obtained show similar image characteristics as those seen in actual phantom data.</p

    Impact of New Scatter Correction Strategies on High-Resolution Research Tomograph Brain PET Studies

    Get PDF
    The aim of this study is to evaluate the impact of different scatter correction strategies on quantification of high-resolution research tomograph (HRRT) data for three tracers covering a wide range in kinetic profiles. Healthy subjects received dynamic HRRT scans using either (R)-[C-11]verapamil (n = 5), [C-11]raclopride (n = 5) or [C-11]flumazenil (n = 5). To reduce the effects of patient motion on scatter scaling factors, a margin in the attenuation correction factor (ACF) sinogram was applied prior to 2D or 3D single scatter simulation (SSS). Some (R)-[C-11]verapamil studies showed prominent artefacts that disappeared with an ACF-margin of 10 mm or more. Use of 3D SSS for (R)-[C-11]verapamil showed a statistically significant increase in volume of distribution compared with 2D SSS (p 0.05). When there is a patient motion-induced mismatch between transmission and emission scans, applying an ACF-margin resulted in more reliable scatter scaling factors but did not change (and/or deteriorate) quantification

    The impact of using BARCIST 1.0 criteria on quantification of BAT volume and activity in three independent cohorts of adults

    Get PDF
    Human brown adipose tissue (BAT) is commonly assessed by cold-induced 18F-fluorodeoxyglucose (FDG) PET-CT using several quantification criteria. Uniform criteria for data analysis became available recently (BARCIST 1.0). We compared BAT volume and activity following BARCIST 1.0 criteria against the most commonly used criteria [Hounsfield Units (HU):-250, -50, standardized uptake value (SUV):2.0; HU: Not applied, SUV:2.0 and HU:-180, -10, SUV:1.5] in a prospective study using three independent cohorts of men including young lean adults, young overweight/obese adults and middle-aged overweight/obese adults. BAT volume was the most variable outcome between criteria. While BAT volume calculated using the HU: NA; SUV: 2.0 criteria was up to 207% higher than the BAT volume calculated based on BARCIST 1.0 criteria, it was up to 57% lower using the HU: -250, -50; SUV: 2.0 criteria compared to the BARCIST 1.0. Similarly, BAT activity (expressed as SUVmean) also differed between different thresholds mainly because SUVmean depends on BAT volume. SUVpeak was the most consistent BAT outcome across the four study criteria. Of note, we replicated these findings in three independent cohorts. In conclusion, BAT volume and activity as determined by 18F-FDG-PET/CT highly depend on the quantification criteria used. Future human BAT studies should conduct sensitivity analysis with different thresholds in order to understand whether results are driven by the selected HU and/or SUV thresholds. The design of the present study precludes providing any conclusive threshold, but before more definitive thresholds for HU and SUV are available, we support the use of BARCIST 1.0 criteria to facilitate interpretation of BAT characteristics between research groups

    Partial volume correction strategies for quantitative FDG PET in oncology

    Get PDF
    Purpose: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. Methods: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. Results: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Cl

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    SMART(SiMulAtion and ReconsTruction) PET: An efficient PET simulation-reconstruction too

    No full text
    Matlab scripts used to make the data analysis of the paper SMART(SiMulAtion and ReconsTruction) PET: An efficient PET simulation-reconstruction tool. Furthermore, the simulated, as well as the scanned data sets of the NEMA-IQ. The set includes the EARL analysis tool (iqq_optim_....sav), the simulation tool (reconsimulation_....sav) and the program to modifiy the Digital Reference Object (DRO) (IQ_DRO_Modifier.sav)
    corecore