47 research outputs found
An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets
Optically thin ice and mixed-phase clouds play an important role in polar
regions due to their effect on cloud radiative impact and precipitation.
Cloud-base heights can be detected by ceilometers, low-power backscatter
lidars that run continuously and therefore have the potential to provide
basic cloud statistics including cloud frequency, base height and vertical
structure. The standard cloud-base detection algorithms of ceilometers are
designed to detect optically thick liquid-containing clouds, while the
detection of thin ice clouds requires an alternative approach. This paper
presents the polar threshold (PT) algorithm that was developed to be
sensitive to optically thin hydrometeor layers (minimum optical depth
Ï„ ≥ 0.01). The PT algorithm detects the first hydrometeor layer
in a vertical attenuated backscatter profile exceeding a predefined threshold
in combination with noise reduction and averaging procedures. The optimal
backscatter threshold of 3 × 10<sup>−4</sup> km<sup>−1</sup> sr<sup>−1</sup> for
cloud-base detection near the surface was derived based on a sensitivity
analysis using data from Princess Elisabeth, Antarctica and Summit,
Greenland. At higher altitudes where the average noise level is higher than
the backscatter threshold, the PT algorithm becomes signal-to-noise ratio
driven. The algorithm defines cloudy conditions as any atmospheric profile
containing a hydrometeor layer at least 90 m thick. A comparison with
relative humidity measurements from radiosondes at Summit illustrates the
algorithm's ability to significantly discriminate between clear-sky and
cloudy conditions. Analysis of the cloud statistics derived from the PT
algorithm indicates a year-round monthly mean cloud cover fraction of 72%
(±10%) at Summit without a seasonal cycle. The occurrence of
optically thick layers, indicating the presence of supercooled liquid water
droplets, shows a seasonal cycle at Summit with a monthly mean summer peak of
40 % (±4%). The monthly mean cloud occurrence frequency in summer
at Princess Elisabeth is 46% (±5%), which reduces to 12%
(±2.5%) for supercooled liquid cloud layers. Our analyses
furthermore illustrate the importance of optically thin hydrometeor layers
located near the surface for both sites, with 87% of all detections below
500 m for Summit and 80% below 2 km for Princess Elisabeth. These
results have implications for using satellite-based remotely sensed cloud
observations, like CloudSat that may be insensitive for hydrometeors near
the surface. The decrease of sensitivity with height, which is an inherent
limitation of the ceilometer, does not have a significant impact on our
results. This study highlights the potential of the PT algorithm to extract
information in polar regions from various hydrometeor layers using
measurements by the robust and relatively low-cost ceilometer instrument
WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping
The challenge of global food security in the face of population growth, conflict and climate change requires a comprehensive understanding of cropped areas, irrigation practices and the distribution of major commodity crops like maize and wheat. However, such understanding should preferably be updated at seasonal intervals for each agricultural system rather than relying on a single annual assessment. Here we present the European Space Agency funded WorldCereal system, a global, seasonal, and reproducible crop and irrigation mapping system that addresses existing limitations in current global-scale crop and irrigation mapping. WorldCereal generates a range of global products, including temporary crop extent, seasonal maize and cereals maps, seasonal irrigation maps, seasonal active cropland maps, and confidence layers providing insights into expected product quality. The WorldCereal product suite for the year 2021 presented here serves as a global demonstration of the dynamic open-source WorldCereal system. The presented products are fully validated, e.g., global user's and producer's accuracies for the annual temporary crop product are 88.5 % and 92.1 %, respectively. The WorldCereal system provides a vital tool for policymakers, international organizations, and researchers to better understand global crop and irrigation patterns and inform decision-making related to food security and sustainable agriculture. Our findings highlight the need for continued community efforts such as additional reference data collection to support further development and push the boundaries for global agricultural mapping from space. The global products are available at https://doi.org/10.5281/zenodo.7875104 (Van Tricht et al., 2023)
The Greenland and Antarctic ice sheets under 1.5â—¦C global warming
Even if anthropogenic warming were constrained to less than 2°C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the last decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5-2.0°C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance elevation feedback, while for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening
In vitro set-up of modified Blalock Taussig shunt: Vascular resistance-flow relationship
Background A modified Blalock-Taussig (mBT) shunt is an anastomosis created between the systemic and pulmonary arterial tree in order to improve pulmonary blood flow in neonates and children with congenital heart disease. The aim of this study was to assess vascular resistance-flow relationship in an in vitro set-up of a modified Blalock Taussig shunt. Methods A shunt set-up was constructed with the vessels of a sheep. A modified BT shunt was anastomosed between an innominate (brachiocephalic) and a right pulmonary artery. A Medos pump (ventricular assist device) was used to create pulsatile flow. Three different mean pulmonary artery flow rates (QPA) were applied. Once mean pulmonary and mean aortic flows (QAO) were fixed, shunt flow rates for twelve different pulmonary vascular resistances (Rp) were investigated. Results For all three pulmonary flow rates, the shunt flow decreased with increasing pulmonary resistance. In addition, systemic flow decreased compared to pulmonary flow. When pulmonary flow rate was set at 800 ml/min and aorta flow rate at 900 ml/min, the distribution of flow between pulmonary and systemic organs flow rates ranged between 69% - 70% and 30% - 31% respectively. Similarly, when both pulmonary and aorta flow rates were set at 900 ml/min, pulmonary and systemic organ flows ranged between 73% - 77% and 23% - 27% respectively. For pulmonary and aorta flow rates of 1000 ml/min and 900 ml/min, respectively, the distribution of flow between pulmonary and systemic organ flow rates varied between 79% - 83% and 17% - 21% respectively. Conclusion Knowledge of the relationship between vascular resistances and flow in this surgically created in vitro mBT shunt set-up may be helpful in the clinical management of the patients whose survival is crucially dependent on the blood flow distribution between the pulmonary and systemic circulation. </jats:sec
Improving satellite-retrieved surface radiative fluxes in polar regions using a smart sampling approach
The surface energy budget (SEB) of polar regions is key to understanding
the polar amplification of global climate change and its worldwide consequences. However, despite a growing network of ground-based automatic weather stations that measure the radiative components of the SEB, extensive areas remain where no ground-based observations are available. Satellite remote sensing has emerged as a potential solution to retrieve components of the SEB over remote areas, with radar and lidar aboard the CloudSat and CALIPSO satellites among the first to enable estimates of surface radiative long-wave (LW) and short-wave (SW) fluxes based on active cloud observations. However, due to the small swath footprints, combined with a return cycle of 16 days,
questions arise as to how CloudSat and CALIPSO observations should be
optimally sampled in order to retrieve representative fluxes for a given
location. Here we present a smart sampling approach to retrieve downwelling
surface radiative fluxes from CloudSat and CALIPSO observations for any given
land-based point-of-interest (POI) in polar regions. The method comprises a
spatial correction that allows the distance between the satellite
footprint and the POI to be increased in order to raise the satellite sampling frequency. Sampling frequency is enhanced on average from only two unique satellite overpasses each month for limited-distance sampling < 10 km from
the POI, to 35 satellite overpasses for the smart sampling approach. This
reduces the root-mean-square errors on monthly mean flux estimates compared
to ground-based measurements from 23 to 10 W m−2 (LW) and from 43 to
14 W m−2 (SW). The added value of the smart sampling approach is shown
to be largest on finer temporal resolutions, where limited-distance sampling
suffers from severely limited sampling frequencies. Finally, the methodology
is illustrated for Pine Island Glacier (Antarctica) and the Greenland
northern interior. Although few ground-based observations are available for
these remote areas, important climatic changes have been recently reported.
Using the smart sampling approach, 5-day moving average time series of
downwelling LW and SW fluxes are demonstrated. We conclude that the smart
sampling approach may help to reduce the observational gaps that remain in
polar regions to further refine the quantification of the polar SEB
In vitro set-up of modified Blalock Taussig shunt: Vascular resistance-flow relationship
Background: A modified Blalock-Taussig (mBT) shunt is an anastomosis created between the systemic and pulmonary arterial tree in order to improve pulmonary blood flow in neonates and children with congenital heart disease. The aim of this study was to assess vascular resistance-flow relationship in an in vitro set-up of a modified Blalock Taussig shunt