1,632 research outputs found

    Suppression of Zeeman gradients by nuclear polarization in double quantum dots

    Get PDF
    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the gg-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution

    Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade

    Get PDF
    We have achieved the few-electron regime in InAs nanowire double quantum dots. Spin blockade is observed for the first two half-filled orbitals, where the transport cycle is interrupted by forbidden transitions between triplet and singlet states. Partial lifting of spin blockade is explained by spin-orbit and hyperfine mechanisms that enable triplet to singlet transitions. The measurements over a wide range of interdot coupling and tunneling rates to the leads are well reproduced by a simple transport model. This allows us to separate and quantify the contributions of the spin-orbit and hyperfine interactions.Comment: 5 pages, 4 figure

    MiniBacillus PG10 as a Convenient and Effective Production Host for Lantibiotics

    Get PDF
    Efficient bacterial cell factories are important for the screening and characterization of potent antimicrobial peptides such as lantibiotics. Although lantibiotic production systems have been established in Lactococcus lactis and Escherichia coli, the industrial workhorse Bacillus subtilis has been left relatively unexplored as a lantibiotic production host. Therefore, we tested different B. subtilis strains for their ability to produce lantibiotic peptides by using the subtilin modification and transport enzymes derived from the natural subtilin producer B. subtilis ATCC 6633. Our study shows that although B. subtilis ATCC 6633 and 168 are able to produce various processed lantibiotic peptides, an evident advantage of using either the 8-fold protease-deficient strain WB800 or the genome-minimized B. subtilis 168 strain PG10 is the lack of extracellular serine protease activity. Consequently, leader processing of lantibiotic precursor peptides is circumvented and thus potential toxicity toward the production host is prevented. Furthermore, PG10 provides a clean secondary metabolic background and therefore appears to be the most promising B. subtilis lantibiotic production host. We demonstrate the production of various lantibiotic precursor peptides by PG10 and show different options for their in vitro activation. Our study thus provides a convenient B. subtilis-based lantibiotic production system, which facilitates the search for novel antimicrobial peptides

    Suppression of Zeeman Gradients by Nuclear Polarization in Double Quantum Dots

    Get PDF
    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution

    Risk‐taking increases under boredom

    Get PDF
    We examined if boredom is associated with risk‐taking. Although this association has frequently been postulated, it has rarely been tested, and the evidence has thus far been rather indirect and speculative. We conducted three studies to test this association more systematically. In Study 1, people high in boredom proneness reported greater risk‐taking across financial, ethical, recreational, and health or safety domains. In Study 2, over a series of risky decisions, risk‐taking increased in tandem with state boredom. Consistently, in Study 3, people who felt more bored were more likely to choose risky gambles. Furthermore, while dispositional self‐control predicted lower risk‐taking, state boredom nullified this association, suggesting that elevated risk‐taking might be attributed the erosion of self‐control under boredom. Our findings establish via direct empirical tests that boredom is associated with making riskier decisions

    Sex Differences in Neoplastic Progression in Barrett's Esophagus:A Multicenter Prospective Cohort Study

    Get PDF
    Recommendations in Barrett’s esophagus (BE) guidelines are mainly based on male patients. We aimed to evaluate sex differences in BE patients in (1) probability of and (2) time to neoplastic progression, and (3) differences in the stage distribution of neoplasia. We conducted a multicenter prospective cohort study including 868 BE patients. Cox regression modeling and accelerated failure time modeling were used to estimate the sex differences. Neoplastic progression was defined as highgrade dysplasia (HGD) and/or esophageal adenocarcinoma (EAC). Among the 639 (74%) males and 229 females that were included (median follow-up 7.1 years), 61 (7.0%) developed HGD/EAC. Neoplastic progression risk was estimated to be twice as high among males (HR 2.26, 95% CI 1.11–4.62) than females. The risk of HGD was found to be higher in males (HR 3.76, 95% CI 1.33–10.6). Time to HGD/EAC (AR 0.52, 95% CI 0.29–0.95) and HGD (AR 0.40, 95% CI 0.19–0.86) was shorter in males. Females had proportionally more EAC than HGD and tended to have higher stages of neoplasia at diagnosis. In conclusion, both the risk of and time to neoplastic progression were higher in males. However, females were proportionally more often diagnosed with (advanced) EAC. We should strive for improved neoplastic risk stratification per individual BE patient, incorporating sex disparities into new prediction models

    Societal emotional environments and cross-cultural differences in life satisfaction: A forty-nine country study

    Get PDF
    In this paper, we introduce the concept of ‘societal emotional environment’: the emotional climate of a society (operationalized as the degree to which positive and negative emotions are expressed in a society). Using data collected from 12,888 participants across 49 countries, we show how societal emotional environments vary across countries and cultural clusters, and we consider the potential importance of these differences for well-being. Multilevel analyses supported a ‘double-edged sword’ model of negative emotion expression, where expression of negative emotions predicted higher life satisfaction for the expresser but lower life satisfaction for society. In contrast, partial support was found for higher societal life satisfaction in positive societal emotional environments. Our study highlights the potential utility and importance of distinguishing between positive and negative emotion expression, and adopting both individual and societal perspectives in well-being research. Individual pathways to happiness may not necessarily promote the happiness of others.info:eu-repo/semantics/publishedVersio

    Improved performance of the LHCb Outer Tracker in LHC Run 2

    Full text link
    The LHCb Outer Tracker is a gaseous detector covering an area of 5×6m25\times 6 m^2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in ppp p, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20\%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.Comment: 29 pages, 20 figures, minor changes to match the published versio

    Generic nano-imprint process for fabrication of nanowire arrays

    Full text link
    A generic process has been developed to grow nearly defect free arrays of (heterostructured) InP and GaP nanowires. Soft nanoimprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 C for InP and 700 C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.Comment: 12 pages, 4 figures, 2 table

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 ÎŒm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 ÎŒm for translations in the plane transverse to the beam. A primary vertex resolution of 13 ÎŒm in the transverse plane and 71 ÎŒm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 ÎŒm is achieved for particles with transverse momentum greater than 1 GeV/c
    • 

    corecore