377 research outputs found
Two-dimensional burst identification codes and their use in burst correction
A new class of codes, called burst identification codes, is defined and studied. These codes can be used to determine the patterns of burst errors. Two-dimensional burst correcting codes can be easily constructed from burst identification codes. The resulting class of codes is simple to implement and has lower redundancy than other comparable codes. The results are pertinent to the study of radiation effects on VLSI RAM chips, which can cause two-dimensional bursts of errors
On the existence of optimum cyclic burst-correcting codes
It is shown that for each integer b >= 1 infinitely many optimum cyclic b-burst-correcting codes exist, i.e., codes whose length n, redundancy r, and burst-correcting capability b, satisfy n = 2^{r-b+1} - 1. Some optimum codes for b = 3, 4, and 5 are also studied in detail
Age Related Visual Pathologies among Nursing Home Residents: An Evaluation of Light Conditions and Recording in Client Files
Objective: Reflection on visual problems in nursing homes. Data Sources: Eye examinations, documented visual problems and illuminance levels. Study design: The optometric examinations and recorded visual problems were combined with illuminance data. Data collection: In seven nursing homes, 259 residents underwent an optometric examination. Their client records were analyzed for information regarding visual functioning. The illuminance data were ranked to set the quality of the lighting conditions. Principal findings: 50% of the referred residents had problems with cataracts, retinal problems (21%), suspected glaucoma (13%), and other pathologies (16%). The information was not current in 56% of the records. The quality of lighting conditions was low or moderate. Conclusion: The finding of poor lighting conditions in nursing homes in combination with a high prevalence of visual problems (with cataract found to be the most common age related pathology), stretches the need of enhanced awareness of eye care by professional caregivers
On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas
A method for the asymmetric focusing of electron bunches, based on the active
plasma lensing technique is proposed. This method takes advantage of the strong
inhomogeneous magnetic field generated inside the capillary discharge plasma to
focus the ultrarelativistic electrons. The plasma and magnetic field parameters
inside the capillary discharge are described theoretically and modeled with
dissipative magnetohydrodynamic computer simulations enabling analysis of the
capillaries of rectangle cross-sections. Large aspect ratio rectangular
capillaries might be used to transport electron beams with high emittance
asymmetries, as well as assist in forming spatially flat electron bunches for
final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl
Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
One of the most robust methods, demonstrated up to date, of accelerating
electron beams by laser-plasma sources is the utilization of plasma channels
generated by the capillary discharges. These channels, i.e., plasma columns
with a minimum density along the laser pulse propagation axis, may optically
guide short laser pulses, thereby increasing the acceleration length, leading
to a more efficient electron acceleration. Although the spatial structure of
the installation is simple in principle, there may be some important effects
caused by the open ends of the capillary, by the supplying channels etc., which
require a detailed 3D modeling of the processes taking place in order to get a
detailed understanding and improve the operation. However, the discharge
plasma, being one of the most crucial components of the laser-plasma
accelerator, is not simulated with the accuracy and resolution required to
advance this promising technology. In the present work, such simulations are
performed using the code MARPLE. First, the process of the capillary filling
with a cold hydrogen before the discharge is fired, through the side supply
channels is simulated. The main goal of this simulation is to get a spatial
distribution of the filling gas in the region near the open ends of the
capillary. A realistic geometry is used for this and the next stage
simulations, including the insulators, the supplying channels as well as the
electrodes. Second, the simulation of the capillary discharge is performed with
the goal to obtain a time-dependent spatial distribution of the electron
density near the open ends of the capillary as well as inside the capillary.
Finally, to evaluate effectiveness of the beam coupling with the channeling
plasma wave guide and electron acceleration, modeling of laser-plasma
interaction was performed with the code INF&RNOComment: 11 pages, 9 figure
Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV
A plasma channel created by the combination of a capillary discharge and inverse Bremsstrahlung laser heating enabled the generation of electron bunches with energy up to 7.8 GeV in a laser-driven plasma accelerator. The capillary discharge created an initial plasma channel and was used to tune the plasma temperature, which optimized laser heating. Although optimized colder initial plasma temperatures reduced the ionization degree, subsequent ionization from the heater pulse created a fully ionized plasma on-axis. The heater pulse duration was chosen to be longer than the hydrodynamic timescale of ≈ 1 ns, such that later temporal slices were more efficiently guided by the channel created by the front of the pulse. Simulations are presented which show that this thermal self-guiding of the heater pulse enabled channel formation over 20 cm. The post-heated channel had lower on-axis density and increased focusing strength compared to relying on the discharge alone, which allowed for guiding of relativistically intense laser pulses with a peak power of 0.85 PW and wakefield acceleration over 15 diffraction lengths. Electrons were injected into the wake in multiple buckets and times, leading to several electron bunches with different peak energies. To create single electron bunches with low energy spread, experiments using localized ionization injection inside a capillary discharge waveguide were performed. A single injected bunch with energy 1.6 GeV, charge 38 pC, divergence 1 mrad, and relative energy spread below 2% full-width half-maximum was produced in a 3.3 cm-long capillary discharge waveguide. This development shows promise for mitigation of energy spread and future high efficiency staged acceleration experiments
Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury.
Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise pathophysiology underlying perinatal WMI, it is essential to fully understand the cellular mechanisms contributing to healthy/normal white matter development. OLs are responsible for myelination of axons. During brain development, OLs are generally derived from neuroepithelial zones, where neural stem cells committed to the OL lineage differentiate into OL precursor cells (OPCs). OPCs, in turn, develop into premyelinating OLs and finally mature into myelinating OLs. Recent studies revealed that OPCs develop in multiple waves and form potentially heterogeneous populations. Furthermore, it has been shown that myelination is a dynamic and plastic process with an excess of OPCs being generated and then abolished if not integrated into neural circuits. Myelination patterns between rodents and humans show high spatial and temporal similarity. Therefore, experimental studies on OL biology may provide novel insights into the pathophysiology of WMI in the preterm infant and offers new perspectives on potential treatments for these patients.This work was funded by the Wilhelmina Children's Hospital Research Fund and the Brain Foundation Netherlands
Genetic Markers in Long-Term Survivors of Glioblastoma Multiforme
Scope: Genistein from foods or supplements is metabolized by the gut microbiota and the human body, thereby releasingmany different metabolites into systemic circulation. The order of their appearance in plasma and the possible influence of food format are still unknown. This study compared the nutrikinetic profiles of genistein metabolites. Methods and results: In a randomized cross-over trial, 12 healthy young volunteers were administered a single dose of 30mggenistein provided as a genistein tablet, a genistein tablet in low fat milk, and soy milk containing genistein glycosides. A high mass resolution LC-LTQ-Orbitrap FTMS platform detected and quantified in human plasma: free genistein, seven of its phase-II metabolites and 15 gut-derived metabolites. Interestingly, a novel metabolite, genistein-4- glucuronide-7-sulfate (G-4 G7S) was identified. Nutrikinetic analysis using population-based modeling revealed the order of appearance of five genistein phase II metabolites in plasma: (1) genistein-4,7-diglucuronide, (2) genistein-7-sulfate, (3) genistein-4--sulfate-7-glucuronide, (4) genistein-4-glucuronide, and (5) genistein-7-glucuronide, independent of the food matrix. Conclusion: The conjugated genistein metabolites appear in a distinct order in human plasma. The specific early appearance of G-4 ,7-diG suggests a multistep formation process for the mono and hetero genistein conjugates, involving one or two deglucuronidation steps
- …