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Abstract
Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to

hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of

oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise patho-

physiology underlying perinatal WMI, it is essential to fully understand the cellular mechanisms

contributing to healthy/normal white matter development. OLs are responsible for myelination of

axons. During brain development, OLs are generally derived from neuroepithelial zones, where

neural stem cells committed to the OL lineage differentiate into OL precursor cells (OPCs). OPCs,

in turn, develop into premyelinating OLs and finally mature into myelinating OLs. Recent studies

revealed that OPCs develop in multiple waves and form potentially heterogeneous populations.

Furthermore, it has been shown that myelination is a dynamic and plastic process with an excess

of OPCs being generated and then abolished if not integrated into neural circuits. Myelination pat-

terns between rodents and humans show high spatial and temporal similarity. Therefore,

experimental studies on OL biology may provide novel insights into the pathophysiology of WMI

in the preterm infant and offers new perspectives on potential treatments for these patients.
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1 | WHITE MATTER INJURY IN PRETERM
INFANTS

Approximately 10% of all births occur prematurely, that is, before 37

weeks of gestation (Liu et al., 2012a, 2012b). Preterm infants spend the

first weeks of life under suboptimal extra-uterine conditions, during

which they often encounter inflammatory and hypoxic insults due to

immature organs, vascularization, and immune system (Volpe, Kinney,

Jensen, & Rosenberg, 2011). Such insults can have severe consequences

on brain development, leading to neurological problems later in life

(Ancel et al., 2015; Stoll et al., 2015). The white matter in preterm infants

is particularly vulnerable to injury due to crucial processes in white

matter development taking place during the third trimester of pregnancy

(Salmaso, Jablonska, Scafidi, Vaccarino, & Gallo, 2014; Volpe, 2009). Con-

sequently, at present, the most commonly observed type of brain injury

in preterm infants is white matter injury (WMI) (Back & Miller, 2014).

Over the past decades, the clinical presentation of perinatal WMI

has changed. In the 1980s, relatively large cystic lesions in the white

matter were observed in 5%–10% of extremely preterm infants (born

before a gestational age of 28 weeks) and this type of WMI was

referred to as cystic periventricular leukomalacia (cPVL). cPVL is

defined as necrosis forming cystic lesions localized in the deep periven-

tricular white matter that are well visualized by cranial ultrasound, and

by MRI (Khwaja & Volpe, 2008) (Figure 1). The cysts resolve over

weeks to months, causing ex-vacuo dilatation and periventricular glial

scar formation as observed on MRI scans. cPVL is almost invariably
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related to severe impairment of neurological functioning, including seri-

ous disabilities such as cerebral palsy. Over the past decades, cPVL has

become less common and the incidence has decreased to below 1% in

some centers (Gano et al., 2015; Hamrick et al., 2004; van Haastert

et al., 2011). Presently, the term “WMI” is increasingly being used and

rarely refers to cystic WMI, but rather refers to diffuse WMI (Back,

2006; Woodward, Anderson, Austin, Howard, & Inder, 2006). In diffuse

WMI instead of macroscopic cysts, microscopic cysts (not detected by

ultrasound or MRI) develop and evolve into glial scars with marked astro-

gliosis and microgliosis over the course of several weeks (Volpe, 2009).

Furthermore, diffuse WMI is associated with reduced total white matter

volumes, thinning of important white matter tracts, ventriculomegaly

and altered white matter microstructure as measured by diffusion tensor

imaging (Alexandrou et al., 2014; Glass et al., 2008; Mwaniki, Atieno,

Lawn, & Newton, 2012; Rutherford et al., 2010; Shankaran et al., 2006;

van Vliet, de Kieviet, Oosterlaan, & van Elburg, 2013). Besides atrophy

of white matter tracts and diffuse changes in signal intensity in the white

matter on MRI, punctate white matter lesions (PWML) are observed in

the periventricular white matter in as many as 20% of extremely preterm

infants (Figure 1). PWML appear as focal signal intensity changes on

conventional MRI and as restricted diffusion when the MRI is performed

within a week after the presumed insult suggestive of ischemic injury

(Kersbergen et al., 2014). Compared to cPVL, diffuse WMI and PWML

are related to a milder degree of neurological impairment affecting

mostly cognitive functioning and increased risk of psychological

disorders later in life (Back & Miller, 2014; Guo et al., 2017; Keunen

et al., 2017; Woodward, Clark, Bora, & Inder, 2012).

Based on pathology studies using human postmortem brain tissue,

the stressful environment that preterm infants reside in during the first

weeks of life is thought to negatively affect the developmental pro-

gramming of oligodendrocytes (OLs), the cells responsible for myelina-

tion (Billiards et al., 2008; Buser et al., 2012; Verney et al., 2012). An

arrest in OL maturation due to perinatal insults causes myelination defi-

cits associated with perinatal WMI (Volpe et al., 2011). In order to elu-

cidate the precise pathophysiology underlying perinatal WMI, it is

crucial to fully understand the mechanisms through which OLs develop

and achieve myelination during normal white matter development. In

the next sections, we will describe fundamental aspects contributing to

white matter development starting with the generation of oligodendro-

cyte precursor cells (OPCs), followed by the temporal and spatial pat-

terns through which these cells populate and eventually myelinate the

central nervous system (CNS). Furthermore, heterogeneity within the

OL lineage is discussed. Finally, we translate these findings to the

human situation by discussing similarities and differences between

myelination patterns in rodents versus humans and we highlight the

possible implications for WMI in preterm infants.

2 | OPC GENERATION

The white matter contains myelinated axons that allow communication

between distant brain regions. Myelin sheaths surrounding these axons

FIGURE 1 The clinical problem of perinatal white matter injury (WMI) has evolved over time. Upper panels: photographs of postmortem brain slices
of preterm infants with WMI (published with permission from http://neuropathology-web.org/). Lower panels: T2-weighted MR images of preterm
infants with WMI. Left part of the figure: in the 1980s, cystic periventricular leukomalacia (cPVL) was often observed in preterm infants. cPVL is asso-
ciated with large cystic lesions in the white matter clearly present at macroscopic postmortem tissue and at (transverse) MRI scan (T2 sequence) as
indicated by the green arrowheads. cPVL leads to severe disabilities such as cerebral palsy. Right part of the figure: at present, diffuse WMI is most
often associated with atrophy of white matter causing loss of brain volume (middle (coronal) MRI scan) and punctate white matter lesions (PWML)
(right (coronal) MRI scan: red arrowheads). Diffuse types of WMI are mainly associated with impaired cognitive functioning later in life
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are essential for proper brain connectivity, as myelination enables rapid

and efficient propagation of action potentials, and provides protection

and trophic support to axons (Funfschilling et al., 2012; Saab et al.,

2016). In the central nervous system (CNS), oligodendrocytes (OLs) are

responsible for the production of myelin. Since first being described by

Pío del Río Hortega in 1921, much research has been done into OL

biology and the developmental regulation and functions of these cells

(Bergles & Richardson, 2015; Perez-Cerda, Sanchez-Gomez, & Matute,

2015). OLs originate from neural stem cell (NSC)-derived oligodendro-

cyte precursor cells (OPCs) that differentiate into immature premyeli-

nating OLs (pre-OLs) and finally differentiate into mature OLs that

contact neuronal axons and start the production of myelin (Figure 2)

(Emery, 2010).

Throughout the CNS, OPCs generally originate from neuroepithelial

zones surrounding the ventricles. Here, proliferative NSCs commit to

the OL lineage under the influence of transcription factors such as

Olig1, Olig2, Nkx2.2, and Sox10 (Figure 2) (Emery, 2010). During devel-

opment, OPCs can also derive from radial glial cells (Casper &

McCarthy, 2006; Merkle, Tramontin, Garcia-Verdugo, & Alvarez-Buylla,

2004). The origin and dispersion of OPCs have been extensively studied

in the rodent CNS, particularly in the forebrain, the cerebellum and the

spinal cord. Interestingly, OPCs are generated in multiple waves, starting

with a ventral wave, which shifts toward a more dorsal origin during the

second wave (Figure 3) (Fancy et al., 2009; Kessaris et al., 2006).

There are also spatial differences in OPC development. In the

murine forebrain OPCs originate from the subventricular zone (SVZ) in

a ventral wave from the medial ganglionic eminence and the anterior

entopeduncular area at embryonic day E12.5 (Figure 3, left panel, blue

cells). Gradually, the stream of OPC generation moves dorsally with

OPCs being produced from the lateral and caudal ganglionic eminences

by the age of E15.5 (Figure 3, left panel, red cells). At birth (E21/P0), a

wave of OPCs arises from the dorsal SVZ into the cortex (Kessaris

et al., 2006; Rowitch & Kriegstein, 2010) (Figure 3, left panel, green

cells). Remarkably, tracing studies revealed that OPCs derived from the

first ventral wave are almost completely replaced postnatally, and that

the complete population of OPCs in the forebrain at postnatal day P10

is derived from the medial and dorsal streams (Kessaris et al., 2006).

However, when generation of OPCs during the second or third wave is

disturbed, OPCs from the ventral wave do survive and differentiate to

eventually myelinate the forebrain (Kessaris et al., 2006). These findings

indicate that a competitive mechanism exists, creating a flexible system

with the first, ventral wave acting as “backup” in case later waves are

impaired. At P10, the OPCs derived from the medial wave evenly pop-

ulate the entire forebrain, whereas the destination of OPCs from the

dorsal stream is restricted to cortical areas (Kessaris et al., 2006).

Cerebellar OPCs have been shown to mostly originate from extrac-

erebellar brain regions (Grimaldi, Parras, Guillemot, Rossi, & Wassef,

2009). More specifically, at E11.5, OPCs start to arise from the meten-

cephalic ventral rhombomere 1 region and migrate toward the cerebel-

lum where the first OPCs arrive at E16.5 (Figure 3, middle panel, blue

cells). At E18.5, a large population of OPCs has reached the cerebellum,

where these cells likely proliferate to further expand the cerebellar

population of OPCs (Hashimoto et al., 2016). A second stream of OPCs

is generated locally from the cerebellar ventricular zone (Figure 3, mid-

dle panel, red cells), but these cells comprise only 6% of the cerebellar

OPC population at E18.5 (Hashimoto et al., 2016). After birth, neuroe-

pithelial regions surrounding the fourth ventricle likely continue to pro-

duce OPCs that migrate toward the cerebellum (Reynolds & Wilkin,

1988; L. Zhang & Goldman, 1996) (Figure 3, middle panel, green cells).

In the spinal cord, the first OPCs arise from the ventrally located

premotor neuron (pMN) domain, which starts to generate OPCs after

E12.5 (Ravanelli & Appel, 2015; Richardson et al., 2000) (Figure 3, right

panel, blue cells). At E15.5, a later wave of OPCs is generated from

more dorsal precursor domains of the spinal cord (Fogarty, Richardson,

& Kessaris, 2005; Vallstedt, Klos, & Ericson, 2005) (Figure 3, right panel,

red cells). Spinal cord OPCs generated during the first ventral wave

FIGURE 2 Schematic representation of oligodendrocyte (OL) development and transcription factors that contribute to OL lineage
progression at different developmental stages. OL precursor cells (OPCs) originate from neuroepithelial zones surrounding the ventricles,
where neural stem cells (NSCs) differentiate into (OPCs) under the influence of OL-specific transcription factors Olig1/2, Nkx2.2, and
Sox10. OPCs migrate toward an appropriate site via blood vessels, while at the same time promoting angiogenesis in a HIF1a-dependent
manner, in areas requiring more oxygen. At their final destination, OPCs proliferate to expand the pool of OPCs, under the regulation of
transcription factors such as Id2, Id4, Tcf4, and Hes5. When proliferation is inhibited, OLs differentiate into premyelinating OLs (pre-OLs),
and finally into mature OLs that enwrap neuronal axons with myelin sheaths, under the influence of, for example, Myrf

VAN TILBORG ET AL. | 223



rapidly populate the whole plane of the spinal cord. OPCs that origi-

nate from the dorsal wave at E15.5 also distribute evenly across the

spinal cord, but by the time of birth dorsally derived OPCs make up

only 10%–20% of the OPCs and the majority of OPCs being derived

from the ventral stream (Fogarty, Richardson, & Kessaris, 2005; Vall-

stedt, Klos, & Ericson, 2005).

The origin of OPCs in deep brain structures has not been studied

extensively. Probably, OPCs in these regions are similarly derived from

neuroepithelial zones surrounding the ventricles, from where they

migrate toward the appropriate location and proliferate to expand the

OPC population. For example, in the hypothalamus, OPCs are derived

from a neuroepithelial niche surrounding the third ventricle from E13.5

onward with a peak at E17.5 (Marsters et al., 2016). Also, it has

recently been demonstrated that OPCs generated at E12.5 in the pre-

optic area gradually migrate via the optic chiasm to eventually populate

and myelinate the optic nerve (Ono et al., 2017).

3 | OPC MIGRATION, PROLIFERATION,
AND DIFFERENTIATION

3.1 | OPC migration

OPCs contain growth-cone like structures that sense numerous chemo-

tactic cues to guide them toward their destination (Simpson & Arm-

strong, 1999). A wide variety of signaling molecules have been

implicated in regulating OPC migration. For instance, spatial gradients

of bone morphogenic proteins (BMPs), Sonic hedgehog (Shh) and Wnt

proteins determine the direction of migrating OPCs. For example, dor-

sally secreted BMPs repel ventrally derived OPCs, thereby guiding

them toward more ventral brain areas (Choe, Huynh, & Pleasure,

2014). In addition, different types of local cues, for example, growth

factors, extracellular matrix proteins, axon guidance molecules and neu-

ronal activity can affect OPC migration as well (de Castro & Bribian,

2005; de Castro, Bribian, & Ortega, 2013). Examples of growth factors

that promote OPC migration include platelet-derived growth factor

(PDGF), vascular endothelial growth factor (VEGF), fibroblast growth

factor (FGF) and hepatocyte growth factor (HGF) (Bribian, Barallobre,

Soussi-Yanicostas, & de Castro, 2006; Hayakawa et al., 2011, 2012;

Milner et al., 1997; Murcia-Belmonte, Medina-Rodriguez, Bribian, de

Castro, & Esteban, 2014; Yan & Rivkees, 2002). Furthermore, extracel-

lular matrix components such as laminin, fibronectin, vitronectin,

anosmin-1, and tenascin-C have been shown to stimulate migration of

OPCs (Bribian et al., 2008; Garcion, Faissner, & ffrench-Constant,

2001; Milner, Edwards, Streuli, & Ffrench-Constant, 1996; Murcia-

Belmonte et al., 2016). Moreover, various factors associated with axon

guidance, for example, neural cell adhesion molecules, semaphorins,

netrin-1 and the chemokine CXCL1, guide migrating OPCs by attrac-

tion or repulsion (Okada, Tominaga, Horiuchi, & Tomooka, 2007; Spas-

sky et al., 2002; Tsai et al., 2002; Zhang, Vutskits, Calaora, Durbec, &

Kiss, 2004). Interestingly, it has been shown that neural activation

mediates OPC migration (Mangin, Li, Scafidi, & Gallo, 2012). By acting

on AMPA receptors glutamate enables the formation of an AMPA/av

integrin/proteolipid protein complex, which promotes motility.

In addition, glutamate promotes OPC migration via NMDA receptors

by stimulating expression of the polysialic acid-neural cell adhesion

molecule and by activating the Tiam1/Rac1/ERK signaling pathway

(Gallo et al., 1996; Gudz, Komuro, & Macklin, 2006; C. Wang et al.,

1996; Xiao et al., 2013; Yuan, Eisen, McBain, & Gallo, 1998).

In addition to local and neuronal cues, Tsai et al. (2016) recently

demonstrated that proper brain vascularization is crucial for OPC migra-

tion. More specifically, it was shown that OPCs migrate by “crawling”

along blood vessels (Figure 2), and that OPCs can also “jump” from one

blood vessel to another (Tsai et al., 2016). Wnt-mediated expression of

the chemokine receptor CXCR4 on OPCs enables the coupling to blood

vessels expressing the CXCR4 ligand SDF1 (CXCL12). Interestingly,

increased Wnt signaling caused clustering of OPCs surrounding the vas-

culature (Tsai et al., 2016). Earlier reports demonstrated that OPCs can

promote angiogenesis by monitoring oxygen tension through hypoxia-

inducible factor (HIF) signaling and by secreting Wnt7a/b in response to

low oxygen levels, thereby promoting angiogenesis. Presumably, by

doing this, OPCs ensure oxygen supply during myelination which

requires high oxygen consumption (Yuen et al., 2014). Additionally,

FIGURE 3 Schematic representation of how different waves of
OPC generation populate different regions of the CNS throughout
development (panels: left/orange: forebrain; middle/green:
cerebellum; right/purple: spinal cord). OPCs originating from
different niches are represented by differently colored dots (blue,
red, and green) (based on data by Fogarty, Richardson, & Kessaris,

2005; Grimaldi, Parras, Guillemot, Rossi, & Wassef, 2009;
Hashimoto et al., 2016; Kessaris et al., 2006; Ravanelli & Appel,
2015; Vallstedt, Klos, & Ericson, 2005)

224 | VAN TILBORG ET AL.



active interactions between pericytes and OPCs have been implicated

in maintaining blood–brain barrier integrity (Maki et al., 2015; Seo et al.,

2014). Collectively, these data highlight the importance of reciprocal

interactions between OPCs and the vasculature (Figure 2).

3.2 | Proliferation and differentiation

Once OPCs reach their destination, the population is expanded by pro-

liferation. OPCs are highly proliferative cells that continue to divide

until a homeostatic balance in the number of OPCs is achieved

(Hughes, Kang, Fukaya, & Bergles, 2013). If this balance is disturbed

due to cell death, differentiation or migration, local OPCs are triggered

to proliferate to maintain a consistent pool of OPCs (Hughes, Kang,

Fukaya, & Bergles, 2013). During development, OPC expansion is

actively stimulated by extracellular signals that promote proliferation,

but at the same time inhibit differentiation (for a list of regulatory path-

ways, see Table 1). One important signal is PDGF, which has been

shown to potently drive OPC proliferation (Calver et al., 1998; Richard-

son, Pringle, Mosley, Westermark, & Dubois-Dalcq, 1988). Other exam-

ples of signals that inhibit OPC differentiation include Notch and Wnt

(Fancy et al., 2011; Genoud et al., 2002; Givogri et al., 2002; Guo et al.,

2015; Kremer, Aktas, Hartung, & Kury, 2011; S. Wang et al., 1998).

Downstream of these extracellular signaling molecules, transcription

factors such as inhibitor of differentiation (Id)2, Id4 and Hes5 are

responsible for preventing premature differentiation of OPCs. Down-

regulation of extracellular differentiation inhibitors during development

relieves the “inhibition to differentiate,” for instance by promoting

expression of microRNAs that prevent transcription of differentiation

inhibitors (Dugas et al., 2010; Zhao et al., 2010). The disinhibition

allows OPCs to differentiate into pre-OLs and finally into mature, mye-

linating OLs under the influence of differentiation promoting transcrip-

tion factors like myelin regulatory factor (Myrf) (Bujalka et al., 2013). As

OLs mature, they contact neuronal axons and begin the expression of a

large amount of myelin genes, including myelin-associated glycoprotein

(MAG), myelin oligodendrocyte glycoprotein (MOG), myelin basic pro-

tein (MBP) and myelin proteolipid protein (PLP), to start the assembly

of myelin sheaths enwrapping axons (Nawaz et al., 2015). All in all,

OL maturation and subsequent myelin assembly are tightly regulated

processes that have been widely described earlier, but the exact

mechanisms are beyond the scope of this review (for excellent

reviews, see Emery, 2010; He & Lu, 2013; Mitew et al., 2014;

Simons & Nave, 2015). Interestingly, throughout adulthood OPCs

remain present, are required for myelin maintenance, and can be

recruited to drive remyelination in case of injury to the myelin

sheaths (Gautier et al., 2015). In adult mice, OPCs make up 8%–9%

of the cell population in the white matter and 2%–3% of the popula-

tion in the gray matter (de Castro et al., 2013; Dimou, Simon, Kirchh-

off, Takebayashi, & Gotz, 2008).

TABLE 1 Regulators of OPC differentiation are promising therapeutic targets to promote white matter development in perinatal WMI

Pathway
Promote/inhibit OPC
differentiation References Potential clinical intervention

BMP4 signaling Inhibitor Dizon et al., 2011; Reid et al., 2012; See et al.,
2004

BMP4 inhibition; noggin

Endothelin 2 Promotor Yuen et al., 2013 Endothelin receptor agonists

GABAergic signaling Promotor (conflicting
data)

Hamilton et al., 2017; Zonouzi et al., 2015 Antiepileptic drugs, e.g., tiagabine,
vigabatrin

Hyaluronan/CD44
signaling

Inhibitor Back et al., 2005; Buser et al., 2012; Hagen
et al., 2014

CD44 inhibition; hyaluronidase

IGF1 signaling Promotor Cai et al., 2011; Pang et al., 2007; Pang et al.,
2010a; Ye et al. 2007

IGF1 administration; cell based therapy

JAK/STAT signaling Inhibitor Raymond et al., 2011 JAK/STAT inhibition

JNK signaling Inhibitor Wang et al., 2012; Wang et al., 2014 JNK inhibition

Muscarinic acetylcholine
signaling

Inhibitor Deshmukh et al., 2013; Franklin 2015; Mei
et al., 2014

Muscarinic acetylcholine inhibition;
benztropine; clemastine

Notch signaling Inhibitor Scafidi et al., 2014; Wang et al., 1998 Notch inhibition; EGF

PDGF signaling Inhibitor Calver et al., 1998; Richardson et al., 1988 PDGF inhibition

Potassium signaling Promotor Fogal, McClaskey, Yan, Yan, & Rivkees, 2010;
Zhu, Wendler, Shi, & Rivkees, 2014

KATP agonists; diazoxide

Pro-inflammatory cytokines Inhibitor Favrais et al., 2011; Miron et al., 2013; Pang
et al., 2010b; Taylor et al., 2010

Anti-inflammatory treatments; activin A

Prostaglandin E2 Inhibitor Gano et al., 2015; Shiow et al., 2017 Cyclooxygenase inhibition; indomethacin

Retinoid X receptor g (RXR-g) Promotor Franklin 2015; Huang et al., 2011 RXR-g agonists; 9-cis-retinoic acid

Sirt1 Inhibitor Jablonska et al., 2016 Class III HDAC inhibitors; sirtinol

Wnt/b-catenin signaling Inhibitor Fancy et al., 2009, 2011; Lee et al., 2015a, 2015b Wnt inhibition; Apcdd1 stimulation
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4 | OPC HETEROGENEITY

Over recent years, it has become clear that OPCs and OLs throughout

the brain are not merely a homogeneous population of cells, but that dif-

ferent OPCs can express different markers and exert different functions.

It has been proposed that different OPC subtypes can be classified

based on various aspects such as their developmental stage, their origin,

the expression of specific receptors/ion channels, or the spatial environ-

ment they reside in, which will be explained in more detail below.

4.1 | Classification based on developmental stage

To explore heterogeneity in the OL lineage in detail, Marques et al.

(2016) performed single-cell sequencing on OPCs and OLs from vari-

ous brain areas of juvenile and adult mice. Based on clustering of gene

expression profiles, their data indicate that during the transformation

from OPCs to mature OLs, cells progress through a strict program of

six distinct developmental stages before maturing into myelinating OLs.

Furthermore, they showed that based on their gene expression profile,

during their final developmental stage mature OLs can be clustered

into six additional subsets, indicating that also mature OLs eventually

form a heterogeneous population (Marques et al., 2016). However, it

should be noted that such a distinction may not necessarily reflect

intrinsic OL differences as many transcripts that define the mature OL

subsets are primarily neuronal; therefore, these interesting findings

should be further validated to exclude the possibility of potential bias

by environmental RNA.

4.2 | Classification based on site of generation

As described in Section 2, during development, OPCs arise from differ-

ent brain areas. This raises the question whether OPCs from different

origins represent specific OPC subpopulations with distinct functional

features (Ornelas et al., 2016). Kessaris et al. (2006) revealed that

OPCs derived from the three successive waves depicted in Figure 3

are characterized by different transcription factors. Whereas the OPCs

from the ventral stream express transcription factor Nkx2.1, OPCs

from the medial and dorsal waves express transcription factors Gsh2

and Emx1, respectively (Kessaris et al., 2006). As OPCs derived from

distinct waves possess intrinsically different genetic profiles, they may

also exert functional differences. Indeed, depending on their origin

OPCs have been shown to respond differently to certain stimuli.

Whereas the generation and specification of ventrally derived OPCs

depend on Shh signaling, generation of dorsal OPCs has been shown

to be independent of Shh (Cai et al., 2005; Chandran et al., 2003; Nery,

Wichterle, & Fishell, 2001). Additionally, Ortega et al. (2012) showed

that migration of the first wave of OPCs, which populate the optic

nerve, is dependent on signaling of the epidermal growth factor (EGF)-

related ligand neuregulin-1 via its receptor ErbB4. However, migration

of OPCs derived from later waves is not affected by neuregulin-1, fur-

ther indicating that OPCs from distinct waves show differential sensi-

tivity to stimuli (Ortega et al., 2012). Moreover, Crawford et al. (2016)

showed that in the mouse spinal cord, dorsally derived OPCs have a

greater capacity to contribute to remyelination compared to ventrally

derived OPCs. However, dorsal OPCs show a higher susceptibility to

age-related functional impairments (Crawford, Tripathi, Richardson, &

Franklin, 2016). Together, these studies indicate that different OPC

subpopulations do exist and that functionality of OPCs may partly

depend on their developmental origin.

4.3 | Classification based on expression of receptors/
ion channels

Differences between OPC populations may not only be explained by

their origin and the genetic factors that drive their specification, but also

by the expression of specific proteins, for example, voltage-gated ion

channels (Clarke et al., 2012; Karadottir, Hamilton, Bakiri, & Attwell,

2008). More specifically, OPCs that engage in glutamatergic signaling

and show voltage-dependent depolarization have been shown to be

more vulnerable to ischemic injury (Karadottir et al., 2008). Additionally,

Vigano et al. (2016) identified a subpopulation of OPCs expressing G-

protein-coupled receptor (GPR)17 present throughout the brain. Activa-

tion of GPR17 has been shown to negatively regulate OPC differentia-

tion (Chen et al., 2009; Fumagalli et al., 2011). Indeed, GPR171 OPCs in

adult mice do not differentiate under normal circumstances, but have

the ability to differentiate and start myelination in case of injury to other

GPR17 negative OPCs, creating a reserve pool of OPCs that can com-

pensate for OPC loss in the event of pathological situations (Bonfanti

et al., 2017; Vigano et al., 2016). These GPR17-expressing OPCs may

represent a specific subpopulation of OPCs involved in remyelination.

Whether OPCs with similar protein expression profiles (i.e., expression

of ion channels, GPR17) share similar origins is currently unknown, but

is an interesting issue for further research.

4.4 | Classification based on location

Besides their developmental origin, the location that OPCs and OLs

eventually reside in may also affect their functionality. This is illustrated

by several differences that have been observed between OLs in the

gray and white matter. For instance, in the spinal cord white matter

OLs show altered localization of gap-junction protein connexin-32,

decreased cell-cell coupling and less susceptibility to metabolic distur-

bances compared to gray matter OLs (Bauer et al., 2002; Pastor,

Kremer, Moller, Kettenmann, & Dermietzel, 1998). Furthermore, OLs in

the gray matter have a lower differentiation capacity and their iron

homeostasis is fully dependent on the ferroxidase hephaestin, whereas

in the white matter loss of hephaestin can be compensated for by the

ferroxidase ceruloplasmin (Dimou et al., 2008; Schulz, Vulpe, Harris, &

David, 2011). It could be speculated that such region-dependent differ-

ences are mediated by adaptations of OLs to their environment by

reacting to local signaling molecules.

4.5 | Intrinsic heterogeneity versus environmentally

determined differences

As mentioned above, OPCs from distinct developmental origins are

driven by distinct transcription factors. These diverse transcriptional
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profiles may account for functional differences between various sub-

types of OPCs. However, based on data obtained from single-cell RNA

sequencing it might be more plausible that OPCs from different origins

converge into a transcriptionally homogeneous pool of OPCs (Marques

et al., 2016). As OPCs migrate and further develop, they may adapt

their gene expression profile to the specific needs in the environment

they reside in. In that case, OPC heterogeneity is mainly determined by

environmental factors. To which extent various OPC subtypes are

functionally interchangeable should be further elucidated in the coming

years.

To summarize, more and more evidence indicates that OPCs and

OLs form heterogeneous cell populations with differences in functions

and differentiation capacities that are driven by both intrinsic and

extrinsic factors. Likely, the origin and gene expression profile drive

OLs to migrate and mature in a specific way that can be affected by

local signaling molecules, eventually resulting in differences in expres-

sion of specific proteins like receptors (e.g., GPR17) and ion channels.

Exactly how differences in origin, location and gene expression profile

between OPC populations affect their functions should be further

elucidated.

5 | RODENT VERSUS HUMAN OL BIOLOGY

Human white matter development is a time-consuming process.

Although the axonal bundles that form the basis of the white matter

are mostly in place before the third trimester of pregnancy, myelination

FIGURE 4 Overview of myelination throughout development from term-equivalent age (TEA) to 18 months in human infants and from
postnatal day (P)7 to P35 in rats. The upper panel shows transverse sections of T1-weighted MRI scans at different ages, in the lower sec-
tions the myelinated white matter is manually colorized (red). The middle panel shows the sagittal sections of T1-weighted MRI scans at dif-
ferent ages, in the lower sections the myelinated white matter is manually colorized (red). The lower panel shows sagittal sections of rat
brains at different ages, stained for myelin basic protein (MBP), a myelin marker. The gross spatio-temporal pattern of myelination in
humans shows high resemblance with that of rodents
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of the first axons does not start until 30 weeks gestational age (GA)

and predominantly occurs postnatally (Huppi et al., 1998; Inder &

Huppi, 2000; Semple, Blomgren, Gimlin, Ferriero, & Noble-Haeusslein,

2013) (Figures 4 and 5). The number of OLs in the human white matter

increases until the age of 5 years and remains stable after this age, as

determined by nuclear bomb test-derived carbon (14C) dating (Yeung

et al., 2014). Most myelination occurs during the first year of life

(Aubert-Broche, Fonov, Leppert, Pike, & Collins, 2008), but myelinated

white matter volumes, particularly of frontal brain regions, keep grow-

ing until the age of �40 years (Bartzokis et al., 2001). Most knowledge

regarding the generation and maturation of OPCs that myelinate the

white matter is derived from rodent studies, as described above. To

which extent findings from rodent studies can be extrapolated to the

human situation is an important issue for translational purposes. Below,

we discuss several similarities and differences in rodent versus human

white matter development.

5.1 | Similarities between rodent and human

myelination

Careful analysis of human fetal brain tissue revealed that the first

OPCs emerge in the developing brain at 10 weeks GA, followed by an

expansion of the population before mid-gestation (15–20 weeks GA)

(Jakovcevski, Filipovic, Mo, Rakic, & Zecevic, 2009; Jakovcevski &

Zecevic, 2005a; Rivkin et al., 1995). Several findings indicate that the

ventral-to-dorsal routes of OPC generation are conserved in humans

(Jakovcevski et al., 2009; Jakovcevski & Zecevic, 2005b). Similar to the

rodent situation, OPCs in the human forebrain are derived from the

lateral-medial ganglionic eminence and the SVZ from where they

migrate toward the cortical plate (Jakovcevski & Zecevic, 2005b; Rakic

& Zecevic, 2003). In addition, transcription factors associated with

ventrally derived OPCs in rodents, Dlx2 and Nkx2.1, have also been

observed in human cortical OPCs. A subpopulation of OPCs that does

not express these transcription factors has also been identified, but

whether these cells express factors associated with a dorsal origin was

not investigated (Rakic & Zecevic, 2003). Further evidence of OPC het-

erogeneity in the human brain comes from Leong et al. (2014), who

demonstrated the presence of different OPC subtypes based on

marker expression (A2B5, O4, and MOG) in both fetal and adult brain

tissue using fluorescence activated cell sorting. Besides differential

expression of OPC markers, it was shown that the microRNA expres-

sion profile differs between fetal and adult OPCs (Leong et al., 2014).

Together, these observations raise the possibility that the human brain

also contains different subpopulations of OPCs, originating from differ-

ent brain areas, expressing different transcription factors and showing

diverse phenotypes.

At an anatomical level, myelination patterns also show a high

degree of similarity between rodents and humans, as illustrated in Fig-

ure 4. In the human brain, the caudal-to-rostral order of myelination is

conserved with early myelination of the brain stem, midbrain and cere-

bellum during the first three months of life. Later, myelination of the

telencephalon occurs in a caudal-to rostral manner starting from occipi-

tal cortical regions toward, lastly, the prefrontal cortex (Inder & Huppi,

2000; Jakovcevski et al., 2009; Jakovcevski & Zecevic, 2005b).

5.2 | Differences between rodent and human

myelination

Although myelination throughout development is rather conserved

between species, differences between rodent and human OL biology

have also been described. One obvious difference is brain size; com-

pared to rodents, humans possess a 30003 larger brain volume and

the relative proportion of white matter in the brain has greatly

increased throughout evolution (Semple et al., 2013; Zhang & Sejnow-

ski, 2000). Whereas myelin proteins have been shown to be extremely

long-lived (Savas, Toyama, Xu, Yates, & Hetzer, 2012), several reports

indicate that a relatively high turnover of OLs is crucial for myelin main-

tenance in rodents (Gibson et al., 2014; Young et al., 2013). In contrast,

human OLs have been shown to have a low annual turnover rate of

0.3%, indicating that human myelinating OLs survive for a long time

(Yeung et al., 2014). These findings indicate that the dynamics by which

the pool of OL is maintained may differ between species. However, it

should be noted that OPC maintenance has been investigated in much

less detail in humans, compared to rodents. Of note, the observed dif-

ferences may also be explained by regional differences, that is, whereas

in some brain regions OL turnover is low, other brain regions may

require higher rates of OL turnover.

Moreover, several differences between rodent and human OLs

have been reported at a cellular level. For instance, OPCs cultured

from human fetal brain tissue show reduced responsiveness to the

mitogens bFGF and CXCL1 compared to rodent OPCs (Filipovic &

Zecevic, 2008; Wilson, Onischke, & Raine, 2003). These data indicate

that not necessarily all findings in rodent OPCs can be straightfor-

wardly translated to the human situation. Over the past years, the

FIGURE 5 Developmental progression of OPCs, pre-OLs, and
myelination. The population of OPCs is expanded between 15 and
20 weeks gestational age (GA) (green line). Pre-OLs peak between
30 and 40 weeks GA (orange line). Myelination starts before birth,
but mostly occurs during the first year of life and continues for
several decades (blue line). Children born prematurely are exposed
to perinatal insults during the peak of pre-OLs (red window), which
hamper their ability to differentiate into myelinating OLs resulting
in increased numbers of pre-OLs and reduced myelination as
observed in diffuse WMI (dashed orange and blue lines) (based on
data by Back et al., 2001; Buser et al., 2012)
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technology of producing human OPCs and mature OLs from induced

pluripotent stem cells (iPSCs) has become available (Douvaras et al.,

2014; S. Wang et al., 2013). Human iPSC-derived OPCs may be used

to more specifically assess the biology of human OLs in vitro and to

investigate to which extent findings from rodent OPCs can be trans-

lated to the human situation. In studying human OL biology, iPSC-

derived OPCs provide an alternative to studies on scarce fetal or post-

mortem brain tissue. However, downfalls of iPSC-derived OPC studies

are also evident. Studying aspects such as OPC heterogeneity or func-

tional differences remains difficult as iPSC-derived OPCs have not

experienced the strict developmental programs of migration, prolifera-

tion and maturation in the developing brain. Clearly, it should always

be taken into account that artificial settings of in vitro cultures are dif-

ferent from the in vivo situation.

5.3 | Myelin plasticity

Myelin plasticity has been extensively studied in rodents, but is difficult

to study in humans. More and more evidence indicates that experience-

dependent neural activity can drive myelination, thereby promoting neu-

ral plasticity. To illustrate, physical exercise has been shown to promote

differentiation of OPCs and myelination in mice (Simon, Gotz, & Dimou,

2011). In addition, multiple groups have shown that acute differentiation

of OPCs is required for complex motor learning in mice. In more detail,

motor learning is thought to depend on OPC-mediated plasticity as neu-

ronal activity of involved motor pathways acutely activates OPC produc-

tion, differentiation and myelination, thereby improving connectivity

(Gibson et al., 2014; McKenzie et al., 2014; Schneider et al., 2016; Xiao

et al., 2016). Whether a specific OL subtype is responsible for this type

of activity-dependent myelination is an important question for further

investigation. One study showed that specifically immature OLs express-

ing the stage-specific marker Enpp6 are increased during a motor task

and are required for proper motor learning (Xiao et al. 2016). Further-

more, PDGFR-Sox101 OLs expressing the intracellular calcium channel

ITPR2 are increased in number after motor learning, indicating that

ITPR21 OLs may also play an important role in this respect (Marques

et al., 2016). Whether similar processes of myelin-mediated motor learn-

ing take place in the human CNS is difficult to study at a cellular level.

However, imaging studies do provide evidence of experience-

dependent changes in white matter microstructure in response to vari-

ous types of learning (Zatorre, Fields, & Johansen-Berg, 2012). To illus-

trate, several studies revealed that exercise and skill-learning can

improve integrity of white matter tracts (Scholz, Klein, Behrens, &

Johansen-Berg, 2009; Svatkova et al., 2015), indicating that indeed

OPC-mediated white matter plasticity also occurs in humans.

Another example of experience-dependent myelination was

observed in mice; social isolation of juvenile or adult animals negatively

affected myelination of the prefrontal cortex (Liu et al., 2012a, 2012b;

Makinodan, Rosen, Ito, & Corfas, 2012). Similarly, early social deprivation

was associated with reduced white matter integrity of various brain

areas, including frontal regions, in human subjects (Eluvathingal et al.,

2006; Govindan, Behen, Helder, Makki, & Chugani, 2010). White matter

changes after social neglect may therefore contribute to the develop-

ment of psychiatric disorders in socially deprived individuals (Toritsuka,

Makinodan, & Kishimoto, 2015). Together, these findings indicate that

activity- or experience-dependent myelination does take place in the

human brain. However, whether this type of myelin plasticity requires

the production of new OPCs remains unsure considering the stable

amount and low turnover rate of OLs as observed by Yeung et al.

(2014). To what extent the cellular basis of myelin plasticity in humans is

similar to that of rodents remains an important issue to be elucidated.

To summarize, available evidence indicates that the general spatio-

temporal progress of white matter development in rodents closely

resembles that of humans, including OPC generation from similar neu-

roepithelial zones and myelination in a caudal-to-rostral manner (Figure

4). By combining findings from experimental rodent studies and imag-

ing studies in humans, it is possible to speculate on the mechanisms

underlying phenomena such as activity-dependent myelination. How-

ever, it should be considered that discrepancies between rodents and

humans have also been observed in the signaling pathways by which

OPC generation, migration, and maturation are regulated. Furthermore,

the dynamics by which the existing pool of oligodendrocytes is main-

tained may differ between rodents and humans. Such possible differen-

ces should at least be taken into account when developing novel

therapies to enhance (re)myelination.

6 | IMPLICATIONS FOR PRETERM BIRTH-
RELATED WMI

6.1 | Preterm birth and diffuse WMI

As discussed above, white matter development is a tightly regulated,

intricate process involving many steps. Perinatal insults after preterm

birth coincide with the critical window of pre-OLs populating the white

matter (Back et al., 2001) (Figure 5). Hypoxic and/or inflammatory

insults are thought to create an unfavorable environment for OLs to

fully mature and properly myelinate neuronal axons, thereby dysregulat-

ing myelination leading to long-term impairments in functional outcome

(van Tilborg et al., 2016). Whereas cystic WMI (or cPVL) is associated

with necrotic/apoptotic cell death and axonal injury (Silbereis, Huang,

Back, & Rowitch, 2010), the nowadays predominant diffuse type of

perinatal WMI is not necessarily associated with axonal damage. No

overt axonal abnormalities were observed in several animal models, but

to which extent impaired myelination leads to axonal defects in human

diffuse WMI remains unsure (Riddle et al., 2012; van Tilborg et al.,

2017). Dysregulated OL development can cause alterations in the

microstructure of white matter tracts, which is often observed clinically

(Alexandrou et al., 2014; Glass et al., 2008; Mwaniki, Atieno, Lawn, &

Newton, 2012; Rutherford et al., 2010; Shankaran et al., 2006; van

Vliet, de Kieviet, Oosterlaan, & van Elburg, 2013). However, to which

extent myelination in other brain areas such as the neocortex is affected

in human children with diffuse WMI, should be further elucidated.

6.2 | Implications of novel insights in OL biology

6.2.1 | Signaling pathways regulating OPC differentiation

Impaired maturation of pre-OLs causing myelin deficits is an important

pathophysiological mechanism of diffuse WMI, making OLs interesting
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targets for therapeutic strategies. Various pathological mechanisms

have been proposed to contribute to impaired OL maturation in diffuse

WMI. For instance, inflammatory mediators negatively affect OL devel-

opment (van Tilborg et al., 2016), but also changes in regulatory path-

ways such as the Daam2/Wnt/b-catenin and Notch pathways may

contribute to impeded OL maturation in preterm infants (Back, 2017;

Fancy et al., 2009, 2011; John et al., 2002; Lee et al., 2015a). Increased

activation of JNK signaling in response to perinatal insults has also

been implicated in neonatal WMI (Wang, Tu, Huang, & Ho, 2012;

Wang et al., 2014). In addition, production of high molecular weight

hyaluronan produced by reactive astrocytes has been associated with

inhibition of OPC differentiation in MS and perinatal WMI (Back et al.,

2005; Buser et al., 2012; Hagen et al., 2014). Inhibiting or reversing the

effects of these pathological mediators may be valid therapeutic strat-

egies. However, knowledge on the regulation of healthy OL dynamics

may also aid the development of new treatments to combat diffuse

WMI in preterm infants. Importantly, the signaling pathways contribut-

ing to OPC differentiation may be potential therapeutic targets to over-

come the maturational arrest of OLs (see Table 1). Negative regulators

of OPC differentiation may be inhibited to allow proper differentiation

of OPCs into mature myelinating OLs. For example, BMP4 has been

identified as an inhibitor of oligodendrocyte maturation and overex-

pression of the BMP4 antagonist noggin was shown to protect the

white matter from hypoxia-ischemia-induced neonatal brain injury in

mice (Dizon, Maa, & Kessler, 2011; See et al., 2004). Additionally, acti-

vation of the Notch receptor inhibits differentiation of OPCs into

mature OLs (Wang et al., 1998). In line, downregulation of Notch sig-

naling by EGF treatment promotes recovery after neonatal WMI in

mice (Scafidi et al., 2014). Also, after hypoxia the histone deacetylase

(HDAC) Sirt1 promotes proliferation but inhibits differentiation of

OPCs. Consequently, Sirt1 inhibition by the HDAC inhibitor sirtinol

induces differentiation of OPCs in vitro and may therefore have thera-

peutic potential for neonatal WMI (Jablonska et al., 2016). Similarly,

inhibition of the Wnt pathway by activation of the protein Apcdd1 pro-

motes myelination in hypoxic cerebellar slice cultures indicating poten-

tial of Wnt inhibition as a therapeutic intervention for neonatal WMI.

Conversely, stimulating signals that promote OPC differentiation

may improve myelination and functional outcome in preterm infants

with diffuse WMI. For instance, reduced GABAergic input was shown

to contribute to impaired cerebellar OPC maturation in mice with

hypoxia-induced WMI (Zonouzi et al., 2015). Pharmacologically increas-

ing the availability of GABA using antiepileptic drugs reversed the

effects of hypoxia and rescued myelination (Zonouzi et al., 2015). How-

ever, the exact mechanism requires further investigation as Hamilton

et al. (2017) reported a negative effect of endogenous GABA signaling

on myelination in cortical organotypic slice cultures. Insulin-like growth

factor (IGF)1 is a trophic factor that has been associated with the posi-

tive regulation of OL maturation and IGF1 treatment was shown to

protect the white matter in rats with neonatal WMI (Cai, Fan, Lin,

Pang, & Rhodes, 2011; Pang et al., 2010) (Table 1).

Of note, treatments that have been shown to promote remyelina-

tion in animal models of multiple sclerosis may also have beneficial

effects on myelination in the developing brain and are therefore of

great interest as potential treatments for perinatal WMI (Franklin,

2015). For example, anti-inflammatory compounds such as activin-A,

and activation of retinoid X receptor g (RXR-g) have been shown to

promote remyelination, and may therefore also promote myelination

during development (Huang et al., 2011; Miron et al., 2013) (Table 1).

Additional examples of pathways implicated in the regulation of OPC

differentiation of which intervention may enhance myelination in WMI

are listed in Table 1.

6.2.2 | OPC–vascular interactions

As discussed in “OPC migration,” experimental data indicate that OPCs

interact closely with the brain vasculature. Electron microscopy of

human postmortem brain tissue revealed that similar interactions take

place in the human brain (Maki et al., 2015). From these findings, the

question rises whether interactions between OPCs and blood vessels

may contribute to neonatal WMI. Interestingly, it was demonstrated

that vascular OPCs may play a dual role in WMI in adult mice. Initially,

OPCs can contribute to injury by inducing blood–brain barrier leakage,

but later they can contribute to vascular remodeling during recovery

(Pham et al., 2012; Seo et al., 2013). Whether similar mechanisms play

a role in WMI in the developing brain remains to be investigated, but

the close interaction between OPCs and the vasculature indicates that

specifically these OPCs may be targeted through systemic intervention.

6.2.3 | Timing of insults

Other recent insights in the biology underlying white matter develop-

ment also have implications for understanding the pathophysiology of

WMI in preterm infants. For example, the developmental stage during

which preterm infants are exposed to perinatal insults ranges from

early maternal infections (in utero) to postnatal episodes of inflamma-

tion and/or hypoxia (Chau et al., 2009, 2012; Fyfe, Yiallourou, Wong, &

Horne, 2014; Glass et al., 2008). Considering the different develop-

mental processes taking place in the white matter at these distinct

times, it is possible that the timing of an insult impacts the extent and

localization of WMI, as well as related outcome (Back et al., 2001; Sem-

ple et al., 2013). For instance, different migratory streams of OPCs may

be affected by early or late inflammatory or respiratory insults. Com-

bining clinical data of preterm infants with imaging data and follow-up

data may reveal the role of the timing of certain insults on the extent

and localization of WMI.

6.2.4 | Origin of OPCs

As discussed in “Similarities between rodent and human myelination,”

most evidence indicates that the pool of OPCs in the human brain

develops similar to that of rodents, with an initial dorsal stream of

OPCs that, over time, shifts to a more ventral stream. Crawford et al.

(2016) showed in the rodent spinal cord that OPCs from different ori-

gins have variable susceptibility. Whether OPCs from distinct develop-

mental origins or OPCs with distinct transcriptional profiles are

differentially susceptible to perinatal insults is an interesting question

to further explore in future research. In case certain OPCs are more

susceptible than others, targeting receptors specifically expressed by
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such vulnerable OPC subsets may be an interesting therapeutic

strategy.

6.2.5 | Compensatory mechanisms

As explained in “OPC generation” and “Classification based on expres-

sion of receptors/ion channels,” rodent studies revealed that myelina-

tion is a relatively robust process with an abundance of OPCs being

generated, creating a pool of “backup” OPCs that can start differentiat-

ing in case of injury to surrounding OLs (Kessaris et al., 2006; Vigano

et al. 2016). Whether similar compensatory mechanisms take place in

the human brain, and whether such mechanisms are active in preterm

infants with WMI, are interesting questions to further explore. In case

compensatory mechanisms are at play, boosting such regenerative

processes may promote the recovery of neonatal WMI.

6.2.6 | Myelin plasticity in WMI

Animal and human studies have shown that neural activity stimulates

OPC differentiation and myelination during motor learning (Scholz

et al., 2009; Svatkova et al., 2015; Zatorre et al., 2012). With this in

mind, preterm infants may benefit from neural stimulation to promote

white matter development. Physical therapy or tactile/auditive stimula-

tion may have beneficial effects and may complement other therapeu-

tic strategies that are currently being investigated, such as anti-

inflammatory treatments or stem cell therapy. Indeed, several studies

revealed that music has beneficial effects on preterm infants in terms

of cortisol levels, heart rate, and pain (Qiu et al., 2017; Schwilling et al.,

2015), but due to contradictory results more research is required to

accurately assess the effects of sensory stimulation on white matter

development and outcome in preterm infants (Bieleninik, Ghetti, &

Gold, 2016; Pineda et al., 2017).

In sum, knowledge on the developmental processes underlying

healthy white matter development is crucial to come up with novel

treatment options for when proper myelination is hampered. More

research into the different functionalities and vulnerabilities of specific

OPC subsets is essential to gain more insight into white matter devel-

opment. The different aspects of OL lineage development and dynam-

ics should be taken into account when exploring the pathophysiological

mechanisms underlying WMI and pursuing novel therapies for WMI.

7 | CONCLUDING REMARKS

Over the past years, experimental research, mostly in rodents, provided

much insight in novel concepts regarding OL development and myeli-

nation. As depicted in Figure 4, gross white matter development in

humans shows high resemblance to that of rodents (Jakovcevski &

Zecevic, 2005a, 2005b; Rakic & Zecevic, 2003). However, it should be

taken into account that some differences between rodent and human

OLs have been reported at a cellular level (Filipovic & Zecevic, 2008;

Wilson et al., 2003).

During development, OPCs are generated over the course of mul-

tiple waves, originating from distinct brain regions. Exactly how the

spatial and temporal origins of OPCs determine their functionality

remains to be further investigated, but evidence suggests that OPCs

converge into a single pool of cells that disperse throughout the CNS

and adapt their gene expression profile to the needs of their environ-

ment (Marques et al., 2016). Most OPCs eventually differentiate into

mature OLs to myelinate neuronal axons. Rodent studies revealed that

myelination is a highly dynamic process with an excess of OPCs being

generated in order to compensate for possible injury to developing OLs

(Kessaris et al., 2006; Vigano et al., 2016). Furthermore, OPCs can con-

tribute to neural plasticity by inducing activity-dependent myelination,

which is required for motor learning (Marques et al., 2016; McKenzie

et al., 2014). These insights should be taken into account in order to

understand the pathophysiological mechanisms underlying WMI in pre-

term infants. To date, the precise mechanisms underlying impaired mat-

uration of OLs in perinatal WMI are not fully understood. Therefore, it

is crucial to perform more research into white matter development

under normal and pathological situations in order to develop novel OL-

targeted therapies to combat WMI and its severe consequences in pre-

term infants.
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