18 research outputs found

    The hiding-exposure effect revisited:A method to calculate the mobility of bimodal sediment mixtures

    Get PDF
    Predicting seabed mobility is hampered by the limited accuracy of sediment transport models when the bed is composed of mixed sediments. The hiding-exposure (HE) effect modifies the threshold of motion of individual grain classes in sediment mixtures and its strength is dependent on the grain size distribution. However, an appropriate method of predicting this effect for bimodal sediment mixtures remains to be developed. The prototypical example of a bimodal mixture is that consisting of a well-sorted sand and gravel for the fine and coarse fractions respectively. Through a comprehensive series of laboratory experiments, the HE effect has been quantified for a full range of sand-gravel mixtures from pure sand to pure gravel, the choice of which has been underpinned by an integrated study of offshore geophysical and sedimentological data found in coastal and shelf seas. In the sand–gravel mixtures used in the present study the critical shear stress needed to mobilise the sand and gravel fractions increased by up to 75% and decreased by up to 64%, respectively, compared to that needed to mobilise well-sorted sediment of similar size. The HE effect was found to be dependent on the percentage of gravel (coarse mode) present in the bimodal mixture, whereby the effect for the mixture is the weighted sum of the HE effect for the fine and coarse modes

    Formational history of the Wicklow Trough: a marine transgressed tunnel valley revealing ice flow velocity and retreat rates for the largest ice stream draining the late-Devensian British-Irish Ice Sheet.

    Get PDF
    The Wicklow Trough is one of several Irish Sea bathymetric deeps, yet unusually isolated from the main depression, the Western Trough. Its formation has been described as proglacial or subglacial, linked to the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum. The evolution of the Wicklow Trough and neighbouring deeps, therefore, help us to understand ISIS dynamics, when it was the main ice stream draining the former British–Irish Ice Sheet. The morphology and sub-seabed stratigraphy of the 18 km long and 2 km wide Wicklow Trough is described here from new multibeam echo sounder data, 60 km of sparker seismic profiles and five sediment cores. At a maximum water depth of 82 m, the deep consists of four over deepened sections. The heterogeneous glacial sediments in the Trough overlay bedrock, with indications of flank mass-wasting and subglacial bedforms on its floor. The evidence strongly suggests that the Wicklow Trough is a tunnel valley formed by time-transgressive erosional processes, with pressurised meltwater as the dominant agent during gradual or slow ice sheet retreat. Its location may be fault-controlled, and the northern end of the Wicklow Trough could mark a transition from rapid to slow grounded ice margin retreat, which could be tested with modelling

    Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica

    Get PDF
    Ocean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate

    Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica

    Get PDF
    Ocean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate

    Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction

    Get PDF
    The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British–Irish Ice Sheet between 31 000 and 15 000 years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500 days of field investigation yielding 18 000 km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8 m sea level equivalent occurred at 23 ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22 ka. The tipping point of deglaciation at 22 ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British–Irish Ice Sheet is now the world’s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling.publishedVersio

    Geological settings and seafloor morphodynamic evolution linked to methane seepage

    No full text
    Methane seeps have been shown to be a powerful agent in modifying seabed morphology, amongst others by cementation processes such as the formation of methane-derived authigenic carbonates (MDACs). The cements stabilise mobile sediment particles and thereby promote the formation of edifices such as mounds on various scales. The release of methane from shallow subsurface sources, when concentrated in seeps, has proven hazardous to offshore construction activities. In this paper, methane cycling and MDAC precipitation is explored as a potential “finger on the pulse” for the recognition of shallow gas pockets and active gas seepage. This would provide a valuable planning tool for seabed engineering developments in areas of potential gas seepage. Measurements of methane concentrations in the Irish Sea are correlated with a unique record of longer-term morphological evolution (up to 11 years) of MDAC structures and subsurface geological settings which would favour the build-up of shallow gas. It was found that gas seepage activity associated with fault zones correlates with carbonate mound steepness. Cessation of gas seepage results in a relatively slow process of erosion and burial of the mounds, eventually producing a subdued carbonate mound morphology after several decades. The Quaternary glacial legacy equally seems to define the distribution and geometry of the MDAC structures. In this case, methane gas locally concentrated in sands and gravels capped by clayey glacial sediments may percolate upwards to the seafloor. A link between methane seeps and the formation of unusually large, trochoidally shaped sediment waves observed on continental shelves worldwide is deemed unlikely. However, the observations suggest that gas percolating through sediment waves may be capped by muddy sediments which have deposited on the sediment waves due to anoxic conditions or eroded from a neighbouring cliff. Other sediment waves in the Irish Sea were found to have a step-like morphology similar to that documented in the neighbouring MDAC cemented seafloor. These processes may influence sediment waves dynamics and warrant further investigation
    corecore