20 research outputs found

    Spiders in Fauna Europaea : dual use of the database

    Get PDF
    The history and current work of the project Fauna Europaea is outlined. The different sources used for building up the database and the efforts to keep it updated are described. Available models of national checklists are discussed and the ideal checklist is described. The double use of the database as a matrix behind the official site of Fauna Europaea – as well as a directly visible document on the website of the European Society of Arachnology – are indicated and the differences in transparency, links to literature sources, and facilities such as distribution maps and calculations of numbers of scores per species or of species per country are discussed. The future of the project is briefly outlined. The need for a European identification tool for spiders is stressed

    Linyphia triumphalis : a junior synonym of Centromerus pabulator (Araneae, Linyphiidae)

    Get PDF
    Linyphia triumphalis Denis, 1952 was found to be a junior synonym of Centromerus pabulator (O.P.-Cambridge, 1875) (Araneae, Linyphiidae). New synonymy

    Spiders in a hostile world (Arachnoidea, Araneae)

    Get PDF
    Spiders are powerful predators, but the threats confronting them are numerous. A survey is presented of the many different arthropods which waylay spiders in various ways. Some food-specialists among spiders feed exclusively on spiders. Kleptoparasites are found among spiders as well as among Mecoptera, Diptera, Lepidoptera, and Heteroptera. Predators are found within spiders’ own population (cannibalism), among other spider species (araneophagy), and among different species of Heteroptera, Odonata, and Hymenoptera. Parasitoids are found in the orders Hymenoptera and Diptera. The largest insect order, Coleoptera, comprises a few species among the Carabidae which feed on spiders, but beetles are not represented among the kleptoparasites or parasitoids

    Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    Get PDF
    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment. © 2015, The Author(s)

    New Species in the Old World: Europe as a Frontier in Biodiversity Exploration, a Test Bed for 21st Century Taxonomy

    Get PDF
    The number of described species on the planet is about 1.9 million, with ca. 17,000 new species described annually, mostly from the tropics. However, taxonomy is usually described as a science in crisis, lacking manpower and funding, a politically acknowledged problem known as the Taxonomic Impediment. Using data from the Fauna Europaea database and the Zoological Record, we show that contrary to general belief, developed and heavily-studied parts of the world are important reservoirs of unknown species. In Europe, new species of multicellular terrestrial and freshwater animals are being discovered and named at an unprecedented rate: since the 1950s, more than 770 new species are on average described each year from Europe, which add to the 125,000 terrestrial and freshwater multicellular species already known in this region. There is no sign of having reached a plateau that would allow for the assessment of the magnitude of European biodiversity. More remarkably, over 60% of these new species are described by non-professional taxonomists. Amateurs are recognized as an essential part of the workforce in ecology and astronomy, but the magnitude of non-professional taxonomist contributions to alpha-taxonomy has not been fully realized until now. Our results stress the importance of developing a system that better supports and guides this formidable workforce, as we seek to overcome the Taxonomic Impediment and speed up the process of describing the planetary biodiversity before it is too late

    The European union’s 2010 target: Putting rare species in focus

    Get PDF
    P. 167-185The European Union has adopted the ambitious target of halting the loss of biodiversity by 2010. Several indicators have been proposed to assess progress towards the 2010 target, two of them addressing directly the issue of species decline. In Europe, the Fauna Europaea database gives an insight into the patterns of distribution of a total dataset of 130,000 terrestrial and freshwater species without taxonomic bias, and provide a unique opportunity to assess the feasibility of the 2010 target. It shows that the vast majority of European species are rare, in the sense that they have a restricted range. Considering this, the paper discusses whether the 2010 target indicators really cover the species most at risk of extinction. The analysis of a list of 62 globally extinct European taxa shows that most contemporary extinctions have affected narrow-range taxa or taxa with strict ecological requirements. Indeed, most European species listed as threatened in the IUCN Red List are narrow-range species. Conversely, there are as many wide-range species as narrow-range endemics in the list of protected species in Europe (Bird and Habitat Directives). The subset of biodiversity captured by the 2010 target indicators should be representative of the whole biodiversity in terms of patterns of distribution and abundance. Indicators should not overlook a core characteristic of biodiversity, i.e. the large number of narrow-range species and their intrinsic vulnerability. With ill-selected indicator species, the extinction of narrowrange endemics would go unnoticedS

    Investigating orphan cytochromes P450 from Mycobacterium tuberculosis : the search for potential drug targets

    Get PDF
    Tuberculosis (TB) is a disease that the World Health Organisation (WHO) regards as a global pandemic. There is a great need for new drugs to combat this threat. Drug resistant strains of the causative agent, Mycobacterium tuberculosis (Mtb), have increased the urgency of this quest for novel anti-mycobacterial medicines. Publication of the Mtb genome sequence revealed a large number of cytochrome P450 (CYP) enzymes [Cole, S. T. et al. 1998]. These mono-oxygenase enzymes have been studied for many years and are responsible for metabolic functions in every kingdom of life. Research on the Mtb P450s to date has highlighted several of them as having critcal roles within the organism. CYP121 and CYP128 have been implicated as essential through gene knockout studies. It has been demonstrated that CYP125 is not essential for viability. However, it is part of a gene cluster highly important for Mtb infectivity and virulence. Due to the prospective importance of P450s to Mtb, this group of enzymes is under investigation as a source of novel drug targets. CYP142 was discovered as a potential drug target after it was located to a gene cluster involved in cholesterol catabolism during Mtb dormancy. As part of this PhD project, it was demonstrated that CYP142 performs an almost identical role to that reported for CYP125. These enzymes both perform C27 hydroxylation and carboxylation of the cholesterol side chain. However, variations in the level of oxidation have been identified, dependent upon the redox system with which these P450s are associated. A crystal structure of CYP142 showing high similarity in active site architecture to CYP125 supports the physiological role of CYP142 in cholesterol catabolism. Combining this with in vitro data which demonstrates that CYP142 possesses high affinity for a range of azole anti-fungal agents [Ahmad, Z. et al. 2005, 2006] supports the suggestion that it is a candidate target for the next generation of anti-mycobacterial drugs. CYP144 was highlighted as being important during the latent phase of Mtb growth, a phase that is not targeted by any of the current antimycobacterials. Work performed as part of this PhD has shown that many characteristics of CYP144 are highly comparable to those reported for other MtbP450s. CYP144 shows high affinity and specificity towards many azole molecules. Econazole, clotrimazole and miconazole have repeatedly been shown to bind to MtbP450s, including CYP144 and CYP142, with high affinity and are excellent potential candidates as novel anti-mycobacterial agents. An N-terminally truncated form of CYP144, CYP144-T, has been investigated in the pursuit of a CYP144 crystal structure. It is hoped that this will enable the elucidation of a physiological role for CYP144. Both CYP142 and CYP144 have demonstrated biochemical and biophysical characteristics that contribute to our knowledge of P450 enzymes. This PhD has established that CYP142 exhibits an equilibrium between P450 and P420 species in its CO-bound, ferrous form. A conversion from P420, and stabilisation of P450, upon substrate binding was also demonstrated. CYP144 displays unusual azole coordination characteristics when examined by EPR and removal of the CYP144 gene from Mtb increased sensitivity of the strain to clotrimazole. Studies of these enzymes has advanced knowledge of P450 and Mtb redox chemistry, established roles for the MtbP450 cohort and identified the potential of anti-mycobacterial drugs and associated targets.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore