40 research outputs found

    Simple models for the heat flux from the Atlantic meridional overturning cell to the atmosphere

    Get PDF
    It has been suggested that a slowdown of the Atlantic meridional overturning cell (AMOC) would cause the Northern Hemisphere to cool by a few degrees. We use a sequence of simple analytical models to show that due to the nonlinearity of the system, the simplified heat flux from the modeled AMOC to the atmosphere above is so robust that even changes of as much as 50% in the present AMOC transport are not enough to significantly change the temperature of the outgoing warmed atmosphere (i.e., the fraction of the atmosphere warmed by the AMOC). Our most realistic model (which is still a far cry from reality) involves a warm ocean losing heat to an otherwise motionless and colder atmosphere. As a result, the compressible atmosphere convects, and the generated airflow ultimately penetrates horizontally into the surrounding air. The behavior of the system is attributable to four key aspects of the underlying physical processes: (1) convective atmospheric transport increases by warming the atmosphere, (2) the ocean is warmer than the atmosphere, (3) the surface heat flux is usually proportional to the temperature difference between the ocean and the atmosphere, and (4) the specific heat capacity of water is much larger than that of the air. Taken together, these properties of the system lead to the existence of a dynamic “asymptotic” state, a modeled regime, in which even significant changes in the AMOC transport have almost no effect on the ocean-atmosphere heat flux and the resulting outgoing atmospheric temperature. In the hypothetical limit of an infinitely large specific heat capacity of water, Cpw there is no change in either the atmospheric transport or the temperatures of the ocean and the atmosphere, regardless of how large the reduction in the AMOC transport is. Although our models may be too simple to allow for a direct application to the ocean and atmosphere, they do shed light on the processes in question

    Continuity Culture: A Key Factor for Building Resilience and Sound Recovery Capabilities

    Get PDF
    This article investigates the extent to which Jordanian service organizations seek to establish continuity culture through testing, training, and updating of their business continuity plans. A survey strategy was adopted in this research. Primary and secondary data were used. Semistructured interviews were conducted with five senior managers from five large Jordanian service organizations registered with the Amman Stock Exchange. The selection of organizations was made on the basis of simple random sampling. Interviews targeted the headquarters only in order to obtain a homogenous sample. Three out of five organizations could be regarded as crisis prepared and have better chances for recovery. The other two organizations exhibited characteristics of standard practice that only emphasizes the recovery aspect of business continuity management (BCM), while paying less attention to establishing resilient cultures and embedding BCM. The findings reveal that the ability to recover following major incidents can be improved by embedding BCM in the culture of the organization and by making BCM an enterprise-wide process. This is one of few meticulous studies that have been undertaken in the Middle East and the first in Jordan to investigate the extent to which service organizations focus on embedding BCM in the organizational culture

    Fractional diffusion equation for an n-dimensional correlated LĂ©vy walk.

    Get PDF
    LĂ©vy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated LĂ©vy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated LĂ©vy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated LĂ©vy walk diffusion in terms of quantities that can be measured experimentally

    Orbital Stability for Rotating Planar Vortex Filaments in the Cartesian and Arclength Forms of the Local Induction Approximation

    No full text
    The local induction approximation (LIA) is commonly used to study the motion of a vortex filament in a fluid. The fully nonlinear form of the LIA is equivalent to a type of derivative nonlinear Schrödinger (NLS) equation, and stationary solutions of this equation correspond to rotating planar vortex filaments. Such solutions were first discussed in the plane by Hasimoto [J. Phys. Soc. Jpn. 31 (1971) 293], and have been described both in Cartesian three-space and in the arclength formulation in subsequent works. Despite their interest, fully analytical stability results have been elusive. In the present paper, we present elegant and simple proofs of the orbital stability for the stationary solutions to the derivative nonlinear Schrödinger equations governing the self-induced motion of a vortex filament under the LIA, in both the extrinsic (Cartesian) and intrinsic (arclength) coordinate representations. Such results constitute an exact criterion for the orbital stability of rotating planar vortex filament solutions for the vortex filament problem under the LIA

    Multicomplex Wave Functions for Linear And Nonlinear Schrödinger Equations

    No full text
    We consider a multicomplex Schrödinger equation with general scalar potential, a generalization of both the standard Schrödinger equation and the bicomplex Schrödinger equation of Rochon and Tremblay, for wave functions mapping onto (Formula presented.). We determine the equivalent real-valued system in recursive form, and derive the relevant continuity equations in order to demonstrate that conservation of probability (a hallmark of standard quantum mechanics) holds in the multicomplex generalization. From here, we obtain the real modulus and demonstrate the generalized multicomplex version of Born’s formula for the probability densities. We then turn our attention to possible generalizations of the multicomplex Schrödinger equation, such as the case where the scalar potential is replaced with a multicomplex-valued potential, or the case where the potential involves the real modulus of the wave function, resulting in a multicomplex nonlinear Schrödinger equation. Finally, in order to demonstrate the solution methods for such equations, we obtain several particular solutions to the multicomplex Schrödinger equation. We interpret the generalized results in the context of the standard results from quantum mechanics
    corecore