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Lévy walks define a fundamental concept in random walk theory which allows one to model dif-
fusive spreading that is faster than Brownian motion. They have many applications across different
disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated
Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a mo-
ment method combined with a Cattaneo approximation to derive a fractional diffusion equation
for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and solve it. Our
derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in
terms of quantities that can be measured experimentally.

I. INTRODUCTION

For most of the last century diffusive processes were
understood in terms of Brownian motion, which describes
the random-looking flickering of a tracer particle in a
fluid. This type of stochastic dynamics is characterized
by Gaussian probability density functions (PDFs) for
both the position x and the velocity v of a moving parti-
cle by generating a mean square displacement (MSD) of
an ensemble of particles that increases linearly for large
times, 〈x2〉 ∼ t [1, 2]. The Brownian paradigm was chal-
lenged over the past few decades due to more refined
measurement techniques reporting anomalous diffusion,
where the MSD increases nonlinearly in time, 〈x2〉 ∼ tν

with ν 6= 1 [3–5]. Subdiffusion with an exponent ν < 1
has especially been found for motion in crowded envi-
ronments [6], superdiffusion with ν > 1 was observed,
e.g., for chaotic transport of tracer particles in turbulent
flows [7] as well as for foraging biological organisms [8].
The easiest way to model spreading faster than Brown-
ian motion is in terms of Lévy flights [5, 9, 10]: Here the
step length ℓ is a random variable drawn independently
and identically distributed from a fat-tailed Lévy sta-
ble PDF characterized by power law tails, f(ℓ) ∼ ℓ−1−ξ

with 0 < ξ < 2. Correspondingly, Lévy flights feature
infinite propagation speeds and diverging MSDs. This
motivated the formulation of Lévy walks (LWs) [9, 10],
where a particle follows straight line trajectories under
the constraint of finite velocities by stochastically reori-
entating itself (possibly with intermittent resting phases)
before repeating the process. They became an important
concept for modeling a wide range of physical processes
[10]. LWs belong to the class of (generalised) velocity
jump processes (VJPs): Central to their description is
the running time distribution, specified by a PDF, which
describes how long a particle moves in one direction be-
fore undergoing a stochastic reorientation event. LWs are
obtained by choosing a Lévy stable running time PDF
coupled to a corresponding step length PDF by finite ve-

locities, which generates superdiffusion with finite MSDs.
For VJPs where the running time PDF is exponentially
distributed, in which case the process is memoryless, or
Markov, one recovers the case of normal diffusion with a
MSD that increases linearly for large times. These two
basic VJPs are special cases of the more general class of
Continuous Time Random Walks [3, 11].

For a Brownian particle the PDFs of position and ve-
locity can easily be calculated by solving the standard
diffusion equation, i.e., Fick’s Second Law, and the cor-
responding Fokker–Planck equation. These two equa-
tions arise as special cases of the Klein–Kramers equa-
tion, which is a Fokker–Planck equation both in posi-
tion and velocity space [1, 2]. Deriving corresponding
equations for anomalous diffusion led to fractional differ-
ential equations, where non-integer derivatives are used
based on power law repositioning kernels with infinite
second moments [12]. While for subdiffusion fractional
diffusion equations have been derived based on subordi-
nation or Continuous Time Random Walk theory [3, 11],
this problem turned out to be much more non-trivial for
Lévy walkers due to the spatio–temporal coupling im-
posing finite velocities [10]. Only very recently progress
was made by deriving an integro–differential wave equa-
tion for a one-dimensional LW [13]. More generally, in
position and velocity space a fractional Klein–Kramers
equation containing an n-dimensional correlated LW as
a special case was given in [14, 15] without resting phases,
and in [16] when resting phases are included. An open
question, however, is how to extract a fractional diffusion
equation for LWs from such a generalised Klein–Kramers
equation. A key problem for establishing a relationship
between LWs and a fractional diffusion equation is that
generally a variety of fractional Laplace operators is avail-
able, and the correct choice is not obvious. Obtaining
such an equation enables one to analytically solve first
passage and arrival time problems, which is relevant to
study search problems for physical and biological pro-
cesses [17].
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In this paper we derive such an equation for a su-
perdiffusive LW by starting from the fractional Klein–
Kramers equation in Refs. [14, 16], based on an expan-
sion in terms of moment equations. Using a Cattaneo
approximation, in the limit of large times we obtain a
diffusion equation with a Dirichlet fractional Laplacian
correction term, which can be solved exactly. That this
is not merely a mathematical exercise but that our re-
sult has profound physical meaning is demonstrated by
the fact that in previous literature exactly such equations
have been written down ad hoc for modelling intermit-
tent diffusive dynamics as a superposition of Brownian
motion with Lévy flights [18–20]. This dynamics has in
turn been observed in experiments measuring the move-
ments of biological organisms [21–27]. That our deriva-
tion includes short-range memory makes our result very
relevant to such biophysical applications. Our systematic
derivation discloses how this type of dynamics emerges
from auto-correlated LWs by yielding exact expressions
for all quantities involved in our final equation. These
expressions are in turn based on the joint PDF for the
velocities of two successive steps and the running time
PDF, which can be measured experimentally.
We proceed as follows: We first introduce generalised

VJPs by briefly reviewing previously derived equations.
We then expand the delay kernel characterising the frac-
tional Klein–Kramers equation defining a LW in Laplace
space for large time, before inverting the result back to
spatio–temporal variables. Next we derive and investi-
gate the corresponding moment equations and then close
them by use of the Cattaneo approximation. Finally we
show the equivalence of the Riesz and Dirichlet fractional
Laplacians, which enables us to write down our central
result, a fractional diffusion equation modelling an n-
dimensional correlated LW in the large time limit. The
section following this is devoted to numerical simulations
before we summarise and discuss our results in the final
section.

II. GENERALISED VELOCITY JUMP

EQUATION WITHOUT RESTS

We give a description of a generalised VJP without
rests. In the case where there is a resting phase of
stochastic length included, see Taylor-King et. al. [16].
At time t = 0, a biological agent chooses a direction

θ and speed s at random. The agent then travels with
velocity v = sθ for τ units of time, where τ is also drawn
from probability distribution fτ . At time t = τ , the
agent then instantaneously reorientates itself with a new
direction and speed. The process repeats indefinitely.
This motion is governed by two primary stochastic ef-

fects. We specify these by PDFs, as given below.

a.) Running time: The time spent running, denoted τ ,
is governed by the pdf fτ (t), where

∫∞

0
fτ (t)dt = 1.

b.) Reorientation: We allow velocities from one run

to another to be correlated. We denote the ve-
locity during the running phase immediately be-
fore reorientation by v′ and the velocity immedi-
ately post-reorientation by v, where v′,v ∈ V ,
for velocity space V ⊂ Rn in n spatial dimen-
sions. The velocity v is dependent on v′, and is in-
stantly selected upon entering a new running phase,
governed by the joint pdf T (v,v′). We assume
that this reorientation pdf is separable, so that
T (v,v′) = g(θ, θ′)h(s, s′)/sn−1 where θ is a vec-
tor of length (n−1) containing angles and s = ||v||
is the speed. In two dimensions, the turning kernel
is decomposed as follows:

i.) The angle distribution: g(θ, θ′), requires the

normalisation
∫ 2π

0 g(θ, θ′)dθ = 1.

ii.) The speed distribution: h(s, s′), requires the
normalisation

∫∞

0
h(s, s′)ds = 1.

In Appendix A we describe a simple Gillespie algo-
rithm for generating a sample path. We remark that
a VJP where velocities from one run to another are not
correlated yields a conventional LW as a special case [10].
As derived in [14], the density of particles following a

velocity jump process without rests is given by

[
∂

∂t
+ v · ∇x

]

p(t,x,v)

= −
∫ t

0

Φτ (t− s)p(s,x− (t− s)v,v)ds

+

∫ t

0

Φτ (t− s)
∫

V

T (v,v′)p(s,x− (t− s)v′,v′)dv′ds ,

(1)

where Φτ (t) can be found implicitly by the equation

dFτ

dt
= −

∫ t

0

Φτ (s)Fτ (t− s)ds , (2)

for Fτ (t) =
∫∞

t
fτ (s)ds. In Appendix B we offer an alter-

native derivation, which may appeal especially to math-
ematical biologists. More practically than equation (2),
one can use the Laplace space description

Φ̄τ (λ) =
λf̄τ (λ)

1− f̄τ (λ)
=

1− λF̄τ (λ)

F̄τ (λ)
. (3)

An interesting point to note is that for the Markov ve-
locity jump process where fτ is exponentially distributed
with mean µ = χ−1, then Φτ manifests as a constant rate
parameter, so

fτ (t) = χe−χt ⇐⇒ f̄τ (λ) =
χ

λ+ χ
, (4)

and therefore

Φ̄τ (λ) = χ ⇐⇒ Φτ (t) = χδ(t) . (5)
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III. DELAY KERNEL BEHAVIOUR

For us to consider the large time behaviour of the ve-
locity jump process, we wish to explore equation (1) for
large t. Conveniently in Laplace space, large time t cor-
responds to small Laplace variable λ. We now study the
form of delay kernel Φτ given a running distribution fτ .
By definition of Φτ in Laplace space, we need to investi-
gate equation (3).
In the case where the mean and variance of the running

distribution is finite, one can simply Taylor expand the
underlying distribution fτ and delay kernel Φτ in Laplace
space. When either of the first two moments are unde-
fined, one must be more careful and rely on asymptotic
expansions. The case where both the mean and variance
are finite is explored in [16]. In this paper we review this
case, and present analysis for when the variance is infi-
nite. The case when both the mean and variance of the
running distribution is infinite is more difficult and will
be investigated in future work. We expand the running
distribution fτ in Laplace space including terms up to
quadratic order.

A. Finite mean and variance

If the first two moments of fτ are defined then

f̄τ (λ) = 1− 〈τ〉λ +
1

2
〈τ2〉λ2 − ... (6)

= 1− µλ+
1

2

(
σ2 + µ2

)
λ2 − ... , (7)

where µ = E(τ) = 〈τ〉, and σ2 = E(τ2) − [E(τ)]2 =
〈τ2〉 − 〈τ〉2. Taylor expanding Φ, we find that

Φ̄(λ) = Φ̄(0) + Φ̄′(0)λ+
1

2
Φ̄′′(0)λ2 + ... as λ→ 0 ,(8)

=
1

µ
+

1

2

(
σ2

µ2
− 1

)

λ+O
(
λ2

)
as λ→ 0 . (9)

Note that equation (9) is consistent with equations (4)–
(5) as when fτ is exponentially distributed µ2 = σ2. This
case was examined in detail in earlier work [16], and even-
tually leads to a diffusion equation in the large time limit.

B. Finite mean, infinite variance

If only the first moment is defined (i.e. finite mean, in-
finite variance), then we observe a fat tailed distribution
of the form

fτ (t) ∼ t−2−α as t→∞ , (10)

for α ∈ (0, 1]. In Laplace space, this gives the expansion
[28]

f̄τ (λ) = 1−〈τ〉λ+γλ1+α−... = 1−µλ+γλ1+α−... (11)

as λ→ 0, where µ and γ will depend on the parameters
of the distribution fτ (t). In Appendix C, we give an
example expansion of f̄τ for the Pareto distribution.
Using equation (3) in conjunction with the expansion

given by equation (11), we find that

Φ̄(λ) ∼ λ(1 − µλ+ γλ1+α)

µλ− γλ1+α
∼ 1− µλ+ γλ1+α

µ− γλα . (12)

Noting the Geometric expansion

1

µ− γλα =
1

µ

∞∑

n=0

(
γλα

µ

)n

=
1

µ
+
γλα

µ2
+

(γλα)2

µ3
... ,

(13)
for |λα| < µ/γ, therefore

Φ̄(λ) ∼ 1

µ
+
γλα

µ2
−λ+O

(

λmin{1+α, 2α}
)

as λ→ 0 . (14)

If α = 1 and γ = (σ2 + µ2)/2, then equation (14) is
consistent with equation (8).

IV. INVERSION BACK TO

SPATIO–TEMPORAL VARIABLES

We wish to carry out the analysis for the velocity jump
process without rests. The density is given by equation
(1). In Fourier–Laplace space, we have

[λ+ ik · v] ˜̄p(λ,k,v)− p̃0(k,v) = −Φ̄τ (λ+ ik · v)˜̄p(λ,k,v)

+ Φ̄ω(λ+ ik · v)
∫

V

T (v,v′)˜̄p(λ,k,v′)dv′. (15)

It is now required that we analyse the term

Φ̄(λ+ ik · v)˜̄p(λ,k,v) . (16)

When we have finite mean and infinite variance, we wish
to evaluate the expansion given by equation (14). There-
fore we wish to evaluate terms of the form

Φ̄(λ+ ik · v) ∼
[
1

µ
+
γ(λ+ ik · v)α

µ2
− (λ+ ik · v)

]

.

(17)
The term (λ + ik · v)α is a multidimensional version of
the fractional material derivative introduced in [29]. Be-
cause the fundamental solution of the material derivative
equation is only defined in a weak sense [30], and limited
analytic progress made in dimensions higher than one
[31], we avoid using this pseudo-differential operator. If
we are considering the large time limit, then we make
the ansatz λ = O(||k||1+α). In this regime we can then
use the Binomial Theorem to simplify equation (17) if we
specify that ||v|| ∼ 1. We obtain the term

[
1

µ
+
γ([ik · v]α + αλ[ik · v]α−1 + . . . )

µ2
− (λ+ ik · v)

]

.

(18)
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We henceforth drop the term λ[ik ·v]α−1; this is because
this term will only be large in the small region when
||k · v|| ≪ 1.
By inserting the expression given in equation (18) into

(17), putting it into (15) and then inverting into spatio–
temporal variables, we can write down equation (1) with
the delay kernel that relates to a running distribution
with finite mean and infinite variance
[
∂

∂t
+ v · ∇x

]

p(t,x,v) =

−
[
1

µ
+

γ

µ2
(v · ∇x)

α −
(
∂

∂t
+ v · ∇x

)]

p(t,x,v)

+

∫

V

T (v,v′)

[
1

µ
+

γ

µ2
(v′ · ∇x)

α −
(
∂

∂t
+ v′ · ∇x

)]

× p(t,x,v′)dv′ .
(19)

V. MOMENT EQUATIONS

When integrating over the velocity space, we gener-
ate an equation for the conservation of mass; this equa-
tion refers to the flux of the momentum. More generally,
by considering successively greater monomial moments in
the velocity space, one obtains a system of k equations
where the equation for the time evolution of moment k
corresponds to the flux of moment k + 1. It therefore
becomes necessary to ‘close’ the system of equations to
create something mathematically tractable. We define
the notation for the first three moments as

m0 =

∫

V

p(t,x,v)dv , m1 =

∫

V

vp(t,x,v)dv ,

and M2 =

∫

V

vvT p(t,x,v)dv . (20)

In order to make progress, we must first make an as-
sumption on the turning kernel T . By considering that
the mean post-turn velocity has the same orientation as
the previous velocity, we define the index of persistence
ψd via the relation

v̄(v′) =

∫

V

vT (v,v′)dv = ψdv
′. (21)

Informally, this means that turning angles between con-
secutive velocities have zero mean.
Integrating over v, our equation for m0 is just conser-

vation of mass

∂m0

∂t
+∇x ·m1 = 0 . (22)

For m1, our equation becomes

ψd

[
∂m1

∂t
+∇x ·M2

]

= −(1− ψd)

[
m1

µ
+

γ

µ2

∫

V

v(v · ∇x)
α p(t,x,v) dv

]

.

(23)

One option is to use the Cattaneo approximation to make
progress.

VI. CATTANEO APPROXIMATION STEP

We need to explore our options for methods to close the
velocity space. In the velocity jump literature, arguably
the most cogent method is the Cattaneo approximation
popularised by Hillen [16, 32, 33].
For the case where the speed distribution is indepen-

dent of the previous running step, i.e., h(s, s′) = h(s), we
approximateM2 by the second moment of some function
umin = umin(t,x,v), such that umin has the same first
two moments as p = p(t,x,v) and is minimised in the
L2(V ) norm weighted by h(s)/sn−1. This is essentially
minimising oscillations in the velocity space whilst simul-
taneously weighting down speeds that would be unlikely
to occur [32]. The Cattaneo approximation is particu-
larly valid for large times, as it assumes that any initial
data in the velocity space has been smoothed out.
We introduce Lagrangian multipliers Λ0 = Λ0(t,x)

and Λ1 = Λ1(t,x) and then define

H(u) :=
1

2

∫

V

u2

h(s)/sn−1
dv − Λ0

(∫

V

udv −m0

)

−Λ1 ·
(∫

V

vudv −m1

)

.

(24)

By the Euler–Lagrange equation [34], we can minimise
H(u) to find that

u(t,x,v) =
Λ0(t,x)h(s)

sn−1
+

(Λ1(t,x) · v)h(s)
sn−1

. (25)

We now use the constraints to find Λ0 and Λ1. For m0

we have

m0 =

∫

V

u dv = Λ0

∫

V

h(s)

sn−1
dv = Λ0An−1 , (26)

where An = Area(Sn) and Sn = {x ∈ Rn+1 : ||x|| = 1}
is the hollow n-sphere centred at the origin. Notice also
that the

∫

V
vh(s)/sn−1dv = 0 by symmetry. For the

first moment, we calculate

m1 =

∫

V

v u dv = Λ1 ·
∫

V

h(s)vvT

sn−1
dv = S2

hVnΛ
1 , (27)

where Sβ
h =

∫∞

0
sβh(s)ds is the βth moment of the speed

distribution h, and Vn = Vol(Vn) where Vn is the clo-
sure of Sn−1, i.e., the filled unit ball around the origin.
Therefore, we can stipulate the form for umin as

umin(t,x,v) =
m0(t,x)h(s)

sn−1An−1
+

(m1(t,x) · v)h(s)
S2
hs

n−1Vn
. (28)

We now approximate the second moment of p by the
second moment of umin. Noting that An−1/Vn = n,

M2(umin) =

∫

V

vvTumin(t,x,v)dv =
S2
h

n
Inm

0(t,x) .

(29)
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FIG. 1: Plot of the function Υd(α) for 0 < α < 1 with d = 2
(red) and d = 3 (blue).

In the non-fractional case, this allows us to close the set
of moment equations by the approximation ∇x ·M2 ≈
S2
h

n ∇xm
0.

In the fractional case, one obtains terms of the form
∫

V
v(v ·∇x)

βp dv, to which one must evaluate. We do so
in Appendix D by defining the Riesz derivative, which is
needed to perform these evaluations.

VII. EFFECTIVE FRACTIONAL DIFFUSION

EQUATION

For m1, using the Cattaneo approximation, equation
(23) becomes

− ψd

1− ψd

[
∂m1

∂t
+
S2
h

n
∇xm

0

]

=
m1

µ
+

γ

µ2

(
S1+α
h

An−1
∇α

Mm
0 +

S2+α
h

VnS2
h

Jα
Mm1

)

.

(30)
We can eliminate for m0 to obtain

µψd

(1− ψd)

∂2m0

∂t2
︸ ︷︷ ︸

O(λ2)

+
∂m0

∂t
︸ ︷︷ ︸

O(λ)

=
µψd

(1 − ψd)

S2
h

n
∇2

xm
0

︸ ︷︷ ︸

O(||k||2)

+
γSα+1

h

µAn−1
D

1+α
M m0

︸ ︷︷ ︸

O(||k||1+α)

+
γS2+α

h

µVnS2
h

D
1+α
M m1

︸ ︷︷ ︸

O(λ||k||1+α)

.

(31)
We are using the scaling λ = O(||k||1+α) and we can
ignore higher order terms. Therefore, our equation be-
comes

∂m0

∂t
=

µψd

(1− ψd)

S2
h

n
∇2

xm
0 +

γSα+1
h

µAn−1
D

1+α
M m0 . (32)

In order to foster tractability, we can relate fractional
derivatives via the following theorem.

Theorem 1. The Riesz fractional derivative given by
equation (D4) can be related to the Dirichlet fractional

Laplacian for mixing measure M(dθ) = dθ via the rela-
tionship

D
1+α
M f(x) ≡ Υd(α)∆

1+α
2

x f(x) , (33)

where the Dirichlet fractional Laplacian is defined via the
Fourier transform as

F
(
∆β

xf(x)
)
= −||k||2βf(k) , (34)

and

Υd(α) =







2
√
π sin(απ2 )

Γ( 2+α
2

)

Γ( 3+α
2

)
d = 2

4π3/2 sin(απ2 )
(

Γ( 2+α
2

)

Γ( 3+α
2

)
− Γ( 4+α

2
)

Γ( 5+α
2

)

)

d = 3
.

(35)
Crucially, Υd(α) depends on the dimension d, is a non-
monotonic function of α, and therefore has a maximum
or minimum α∗

d where d

dαΥd(α
∗
d) = 0. An illustration of

Υd(α) is shown in Fig. 1 for 0 < α < 1 for d = 2, 3.

Proof. See Appendix E.

We remark that one could conceivably consider an-
other fractional Laplacian, depending upon the deriva-
tion and application to be studied. Our choice is moti-
vated by computational tractability.
Using Theorem 1, one can rewrite equation (32) as

∂m0

∂t
=

µψd

(1 − ψd)

S2
h

n
∇2

xm
0 +

γSα+1
h

µAn−1
Υd(α)∆

1+α
2

x m0 .

(36)
Equation (36) is our central result. To solve this equa-
tion, we make use of the following theorem from Blumen-
thal and Getoor [35].

Theorem 2. For the transition density fβ(t,x) defined
by

e−t||ξ||β =

∫

Rn

e−i(x·ξ)fβ(t,x)dx , (37)

then for 0 < β ≤ 2, f is given by the self-similarity
relation fβ(t,x) = fβ(1,x/t

1/β)/tn/β and

fβ(1,x) =
1

(2π)n/2||x||n/2−1

∫ ∞

0

e−sβsn/2Jn−2

2

(||x||s)ds ,
(38)

where Jn(x) is the n
th Bessel Function of the First Kind.

When β = 2, we obtain the usual Gaussian distribution.

Proof. See Blumenthal and Getoor [35].

Therefore the solution to equation (36) is

m0(t,x) = f2

(
t

D2
,x

)

∗ f1+α

(
t

D1+α
,x

)

, (39)

where ∗ represents the convolution operator and

D2 =
µψd

(1− ψd)

S2
h

n
and D1+α =

γSα+1

µAn−1
Υd(α) . (40)
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We note that if D1+α has an interior maximum (i.e.
there exists some α∗ ∈ (0, 1) such that d

dα [D1+α]α=α∗ =

0 and d2

dα2 [D1+α]α=α∗ < 0), then by examining equation
(36) in Fourier space, one can optimally reduce the order
1 modes. While Υd(α) given by equation (35) will have
an interior maximum, one would need to choose a partic-
ular form of fτ in such a way that D1+α has an interior
maximum.

VIII. NUMERICAL SIMULATIONS

To demonstrate the validity of equation (36) and its so-
lution equation (39), we reconstruct m0(t,x) from simu-
lations of Algorithm 1 defined in Appendix A. In Figs. 2–
3, we plot the distribution of sample paths released from
the origin in two dimensions for varying D2 and D1+α.
As the primary contribution of this paper is analysis,
and there are many parameters involved with our model,
we avoid carrying out a detailed numerical study. To
obtain a sufficient match between simulation and the an-
alytic expression for m0, 104 simulations of Algorithm 1
were carried out. At time Tend = 105, the simulations
are stopped. The resulting sample paths are binned into
300 × 300 boxes to recreate the distribution shown in
Fig. 2; a cross section is also shown to show the close
match between distributions in Fig. 3.
The underlying choices made in running distribution

fτ and turning kernel T are as follows. The running
distribution fτ is given by equation (C1) for τ0 = 1/2
and β = 3/2 (so α = 1/2), in which case µ = 〈τ〉 =
1. In two dimensions we write the turning kernel T as
T (v,v′) = g(θ, θ′)h(s)/s and we choose

g(θ, θ′) =
eκ cos(θ−θ′)

2πI0(κ)
, and h(s) = δ(s− s∗), (41)

and we specify that s∗ = 1. The angle change distri-
bution g is a von Mises distribution; the index of per-
sistence ψd is then ψd = I1(κ)/I0(κ). To vary the con-
tribution from Gaussian and fractional part of the an-
alytic solution, we run the simulation twice, once with
κ = 0 (so D2 = 0 and D1+α ≈ 0.493) so to highlight the
non-Gaussian nature of m0, and once with κ = 10 (so
D2 ≈ 9.228 and D1+α ≈ 0.493) for a more Gaussian-like
solution. We see that we clearly obtain a close match
between the simulation and analytic solution curves. As
the number of simulations increases, the curves become
indistinguishable by eye.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have seen that for a generalised VJP, if
we send the second moment of the running distribution
to infinity, in the limit of large time we approximately
obtain a fractional diffusion equation. This is particularly
interesting, since for a running distribution with finite

FIG. 2: Comparison of simulations of Algorithm 1, see Ap-
pendix A, and analytic solution to m0(t,x) given by equation
(39). Top row: case where κ = 0, (a) simulation; (b) analytic
solution. Bottom row: case where κ = 10, (c) simulation; (d)
analytic solution. Full details in main text.
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FIG. 3: Cross section of m0(t,x) for varying κ. For κ = 0,
the smooth blue curve shows the analytic solution for m0; the
jagged blue curve shows the simulation constructed m0. For
κ = 10, the smooth red curve shows the analytic solution for
m0; the jagged red curve shows the simulation constructed
m0. Full details in main text.
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mean µ, and variance σ2, as detailed in [16], we obtain
an effective diffusion equation in the large time limit with
coefficient

Deff =
S2
hµ

n

[
1

1− ψd
+

1

2

(
σ2

µ2
− 1

)]

. (42)

When the running time distribution is exponentially dis-
tributed, the second term in the square brackets is iden-
tically zero. Therefore we can view our diffusion con-
stant as the contribution from the exponential compo-
nent of the running time distribution, plus an addi-
tional (non-Markovian) term for non-exponential running
times. When considering equation (36), we see essentially
a Markov process, plus a non-Markov fractional correc-
tion term. Additionally for equation (36), one finds that
in the limit as α→ 1, the diffusion equation is recovered
with diffusion constant given by equation (42).
While our theory thus captures non-Markovian mem-

ory effects, it does not carry through the finite velocity
constraint of LWs as implemented, e.g., by equation (41)
to our fractional diffusion equation (36). This implies
that its solution, the PDF equation (39), does not re-
produce the ballistic fronts and respective cut-offs of LW
PDFs [10], see also Figs. 2–3. Consequently it gener-
ates infinite second moments as for Lévy flights. This
is due to the expansion leading from equation (17) to
equation (18), which is necessary in order to perform an
inverse Fourier-Laplace transform, as well as the Catta-
neo approximation. Fig. 3 suggests that for large times
these fronts are approximately negligible for reproducing
the overall shape of LW PDFs. Capturing them would
necessitate generalising our theory to include higher or-
der moment equations, and avoiding the use of the Bi-
nomial expansion in equation (17), which we performed
to achieve analytical tractability. However, the focus of
our present theory is not on these fronts but rather on
the novel type of intermittency emerging from LWs with
memory, and the possibility to go to higher dimensions.
One-dimensional versions of equation (36) consisting

of a sum of a conventional Laplacian modeling Brown-
ian motion plus a fractional one reproducing Lévy flights
have been written down ad hoc in previous literature
based on physical reasoning. This demonstrates the
physical significance of our derivation and its result:
Lomholt et al. [18] proposed an equation of this type in
order to model the optimal target search on a fast-folding
polymer chain by an ensemble of proteins. Here the con-
ventional Laplacian reproduced the one-dimensional dif-
fusive sliding of proteins or enzymes along the DNA chain
while the fractional Laplacian captured the intersegmen-
tal transfers, or jumps, at chain contact points due to
polymer looping. A generalised version of this model
was considered by Lomholt et al. [19] in order to study
an intermittent search process that switches between lo-
cal Brownian search events and Lévy relocation times.
On a purely mathematical level, equations of this type
form a subclass of distributed-order fractional diffusion
equations; see Ref. [20], equations (39), (41) for mod-

elling a diffusion equation with a superposition of two
(fractional) Laplacians, and its solution equation (42) in
terms of a convolution. We remark that this type of inter-
mittent dynamics is different from the one considered by
Bénichou et al. [17]: There it was explicitly distinguished
between a Brownian search mode during which a target
could be found, and relocation dynamics during which
a searcher was insensitive for any target search. This
dynamics was modelled by a set of two coupled equa-
tions, with a different one for each process. In that sense,
equations like equation (36) are somewhat closer to the
concept of composite Brownian motion [25, 36]: This dy-
namics was designed to model the search of a forager,
or particle, in patchy environments [23], where inter-
and intra-patch movements were defined by Brownian
motion with different mean step lengths. This stochas-
tic motion was generalised by Reynolds [37] in terms of
an adaptive LW encompassing composite Brownian mo-
tion, where the Brownian inter-patch movements were
replaced by a LW. Note, however, that in all the above
models the intermittent dynamics is put in by hand as
a sum of two different stochastic processes reproducing
local search and non-local relocation events while our
equation (36) emerges from a single auto-correlated LW:
Interestingly, here the Brownian term is due to short-
range auto-correlations in the LW dynamics while the
Lévy term results from the power law jumps. Our mathe-
matical derivation thus gives all terms in equations which
are of the type of equation (36) precise physical meaning.

This is important especially in view of a number of re-
cent experiments: For the dinoflagellate Oxyrrhis marina
Bartumeus et al. [27] reported a switching between Lévy
and Brownian search strategies depending on the density
of its prey distribution. Similar results were obtained for
coastal jellyfish (Rhizostoma octopus) [24]. Movement
patterns of crawling mussels (Mytilus edulis) shifted from
Lévy towards Brownian motion with increasing mussel
density, where the Brownian motion emerged from fre-
quent encounters between the mussels in dense environ-
ments [22]. Such type of intermittency can also be gen-
erated by a predator due to spatio–temporal sampling
of prey in different environments: Sims et al. found a
switching between Lévy and Brownian search patterns
for a variety of free-ranging marine predators, where the
animals were hunting either for sparse prey in deep ocean
or for abundant prey close to the more productive shelf-
edge [21, 26]. In all these works the experimental data
was analysed in view of either Brownian or Lévy dynam-
ics but not by a superposition of both. Our new diffusion
equation (36) allows for the latter analysis by shedding
light on the origin of this dynamics in terms of correlated
LWs. Important for experimental applications is also
that the (generalised) diffusion coefficients equation (40)
quantifying this dynamics can be extracted from measur-
ing the PDFs for speed, running time, and turning angle.
That our approach explicitly includes correlations is espe-
cially promising for describing the movement of biological
organisms, where memory often matters [38, 39]. Along
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these lines it would be interesting to derive a fractional
Klein-Kramers equation that is more general than equa-
tion (1) by containing long-range correlations beyond two
successive steps. Following our approach, one may then
try to extract a fractional diffusion equation for a long-
range correlated Lévy walk. In terms of more general
applications, we note that an intermittent switching be-
tween Lévy and Brownian search may be advantageous to
optimise the random search of a mobile robot for adapt-
ing efficiently under changing target density [40].
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Appendix A: Gillespie algorithm

Here we give a simple Gillespie algorithm [41] for gen-
erating a sample path up until time Tend > 0. It should
be noted that the sample path will need to be truncated
as the algorithm generates positions beyond Tend.

Algorithm 1: Algorithm to generate a single gener-
alised VJ sample path without rests.

Data: Initialise time t = 0, starting position at
x(t = 0) = x0 and starting velocity at
v(t = 0) = v0.

Assume particle has just initiated a running state.
while t < Tend do

Sample time spent running τ ∼ fτ (t).
Update position: x(t+ τ)← x(t) + τv(t).
Sample new velocity for next running phase:
v(t+ τ) ∼ T (·,v(t)).
Update time t← t+ τ .

Appendix B: Alternative derivation

We present now an alternative way to derive the main
governing equation (1) for the density p(t,x,v), using
Alt’s structural approach [42]. One can consider the mo-
tion of an individual (bacteria, cell, etc.) that runs with
the velocity v during the run time τ and stops at (t,x)
with given probability βr(τ) per unit time. We define
the mean structural density of individuals, σ(t,x,v, τ),
at point x and time t that move with the velocity v and
having started the move τ units of time ago. The gov-
erning equation for σ(t,x,v, τ) takes the form [42]

∂σ

∂t
+ v · ∇xσ +

∂σ

∂τ
= −βr(τ)σ . (B1)

We assume that at the initial time t = 0 all individuals
have zero running time

σ(0,x,v, τ) = p0(x,v)δ(τ) , (B2)

where p0(x,v) is the initial density. Our purpose is to
obtain the master equation for the density

p(t,x,v) =

∫ t

0

σ(t,x,v, τ)dτ . (B3)

We set up the boundary condition at zero running time
τ = 0:

σ(t,x,v, 0) =

∫ t

0

βr(τ)

∫

V

T (v,v′)σ(t,x,v′, τ)dv′dτ .

(B4)
The master equation for p(t,x,v) can be found by dif-
ferentiating equation (B3) with respect to time t

∂p

∂t
+ v · ∇xp = −i(t,x,v) + j(t,x,v) , (B5)

where the switching terms are

i(t,x,v) =

∫ t

0

βr(τ)σ(t,x,v, τ)dτ , j(t,x,v) = σ(t,x,v, 0) .

(B6)
By using the method of characteristics we find from equa-
tion (B1) for τ < t

σ(t,x,v, τ) = σ(t−τ, (x−v)τ,v, 0) exp
{

−
∫ τ

0

βr(s)ds

}

.

(B7)
The exponential factor in the above formula is the sur-
vival function

Fτ (t) = exp

{

−
∫ t

0

βr(s)ds

}

. (B8)

By using equation (B7) and the Laplace transform tech-
nique [43–45], we find the expressions for the switching
terms:

i(t,x,v) =

∫ t

0

Φτ (t− s)p(s,x− v(t− s),v)ds , (B9)

j(t,x,v) =

∫ t

0

Φτ (t−s)
∫

V

T (v,v′) p(s,x−(t−s)v′,v′)dv′ds .

(B10)
The main advantage of the present derivation is that it
can be easily extended for the nonlinear case [43]. Su-
perdiffusive equations can be obtained for the following
rate [46, 47]

βr(t) =
α

τ0 + t
, 0 < α < 2 . (B11)

The rate equation (B11) leads to a power law (Pareto)
survival function

Fτ (t) =

[
τ0

τ0 + t

]α

, (B12)

and corresponding running time PDF

fτ (t) =
ατα0

(τ0 + t)1+α
. (B13)

Appendix C: Laplace space expansion of Pareto

power law distribution

Consider the Pareto power law distribution with pa-
rameters τ0 and β.

fτ (t) =
βτβ0

(τ0 + t)1+β
⇐⇒ f̄τ (λ) = β (τ0λ)

β
eτ0λΓ (−β, τ0λ)

(C1)
where we used the incomplete gamma function Γ(x, y) :=
∫∞

y
tx−1e−tdt. The mean and variance are both infinite
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for 0 < β < 1, but the distribution has finite mean for
1 < β < 2. Using the asymptotic expansion

Γ (−β, y) = −Γ(1− β)
β

+y−ββ−1+
y1−β

1− β+... as y → 0 ,

(C2)
we recover an expansion of the form given in equation
(11) where µ = τ0/α and γ = −τ1+α

0 Γ(−α) for β = 1+α.

Appendix D: Approximation of fractional term

By closing the set of moment equations as explained
in Sec. VI, in the fractional case one obtains terms of the
form

∫

V
v(v ·∇x)

βp dv. To evaluate these terms requires
the use of the Riesz derivative, which we define first.

Definition 1. In the Meerschaert’s framework [48–50],
for scalar function f : Rn → R the multidimensional
fractional derivative is given by

∇β
Mf(x) =

∫

||θ||=1

θDβ
θf(x)M(dθ)

=

∫

||θ||=1

θ(θ · ∇x)
βf(x)M(dθ) ,

(D1)

for x ∈ Rn and β ∈ (0, 1), where θ = (θ1, ..., θn) is a unit
column vector. We require that M(dθ) is positive finite
measure, called a mixing measure. The term (θ · ∇x)

β is
called the β order fractional directional derivative given
by

F
{
(θ · ∇x)

βf(x)
}
= (iθ · k)β f̃(k) . (D2)

For the vector valued function f : Rn → R, we define the
fractional gradient by

Jβ
Mf(x) =

∫

||θ||=1

θDβ
θ (θ · f(x))M(dθ)

=

∫

||θ||=1

θ(θ · ∇x)
β(θ · f(x))M(dθ) ,

(D3)

where x ∈ Rn and β ∈ (0, 1). In the case when
M(dθ) = const dθ, we get the Riesz derivative. For the
remainder of this paper, we always assume this constant
is identically one. We then define the fractional Lapla-
cian for scalar function f by

D
1+β
M f(x) = ∇x·∇β

Mf(x) =

∫

||θ||=1

(θ·∇x)
1+βf(x)M(dθ) .

(D4)
Additionally, for the vector valued function f , we write

D
1+β
M f(x) = ∇x·Jβ

Mf(x) =

∫

||θ||=1

(θ·∇x)
1+β(θ·f(x))M(dθ) .

(D5)

We now wish to evaluate terms of the form
∫

V

v(v · ∇x)
αp(t,x,v)dv . (D6)

From equation (28), we gave a form for umin(t,x,v). This
allows us to evaluate the fractional flux term as

∫

V

v(v · ∇x)
αumindv (D7)

=

∫

V

v(v · ∇x)
α

[
m0(t,x)h(s)

sn−1An−1
+

(m1(t,x) · v)h(s)
S2
hs

n−1Vn

]

dv ,

Evaluating equation (D7) in polar/spherical coordinates,
one obtains

∫

V

v(v · ∇x)
αumindv (D8)

=
1

An−1

∫ ∞

0

s1+αh(s)ds

∫

||θ||=1

θ(θ · ∇x)
αm0(t,x)dθ ,

+
1

S2
hVn

∫ ∞

0

s2+αh(s)ds

∫

||θ||=1

θ(θ · ∇x)
α(m1(t,x) · θ)dθ ,

=
S1+α
h

An−1
∇α

Mm
0 +

S2+α
h

VnS2
h

Jα
Mm1 .

Appendix E: Proof of Theorem 1

We wish to prove

D
1+α
M f(x) ≡ Υd(α)∆

1+α
2

x f(x) , (E1)

for M(dθ) = dθ. We first consider the left hand side. In
Fourier space, this is

D
1+β
M f̃(k) =

∫

||θ||=1

(iθ · k)1+β f̃(k)dθ . (E2)

In the two-dimensional case, rewriting equation (E2),
using the substitution k = ||k||(cosψ, sinψ) [for ψ ∈
[0, 2π)] and using polar coordinates, we identify Υ2(α)
as

Υ2(α) = −
∫ 2π

0

{

i

(
cosψ
sinψ

)

·
(

cos θ
sin θ

)}1+α

dθ . (E3)

The negative sign appears from the definition of the frac-
tional Laplacian [given in equation (34)]. Using trigono-
metric identities, we manipulate equation (E3), finding

Υ2(α) = −
∫ 2π

0

{i cos(θ − ψ)}1+α
dθ

= −2
[
(i)1+α + (−i)1+α

]
∫ π/2

0

{cos(η)}1+α
dη

= 4 sin
(απ

2

){√
π

2

Γ(2+α
2 )

Γ(3+α
2 )

}

,

(E4)
and the two-dimensional case is proved.
For the three-dimensional case, we wish to evaluate

an integral similar to equation (E3). Using the repre-
sentation k = ||k||(sinψ1 cosψ2, sinψ1 sinψ2, cosψ1) [for
ψ1 ∈ (0, π), ψ2 ∈ (0, 2π)], and using spherical coordinates
this integral can be evaluated similar to that of Υ2(α).


