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Abstract We consider reduction of dimension for
nonlinear dynamical systems. We demonstrate that in
some cases, one can reduce a nonlinear system of equa-
tions into a single equation for one of the state vari-
ables, and this can be useful for computing the solu-
tion when using a variety of analytical approaches. In
the case where this reduction is possible, we employ
differential elimination to obtain the reduced system.
While analytical, the approach is algorithmic and is
implemented in symbolic software such asMAPLE or
SageMath. In other cases, the reduction cannot be
performed strictly in terms of differential operators,
and one obtains integro-differential operators, which
may still be useful. In either case, one can use the
reduced equation to both approximate solutions for
the state variables and perform chaos diagnostics more
efficiently than could be done for the original higher-
dimensional system, as well as to construct Lyapunov
functions which help in the large-time study of the
state variables. A number of chaotic and hyperchaotic
dynamical systems are used as examples in order to
motivate the approach.
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1 Introduction

Nonlinear dynamical systems are ubiquitous in math-
ematics, engineering, and the sciences, with many
real-world phenomenon governed by such nonlinear
processes. In particular, nonequilibrium and chaotic
dynamics are a continuing area of active research
for applied mathematicians, as approximating such
dynamics accurately and efficiently can be quite chal-
lenging. In the present paper, we shall consider reduc-
tion of dimension1 for nonlinear dynamical systems.
This approach has previously been employed in the
literature in order to enable the construction of Lya-
punov functions [1] and equilibrium dynamics [2], as
well as to allow one tomore easily approximate chaotic
attractors analytically [3–5]. One method for reduction
of dimension is differential elimination, in which one
algorithmically reduces the nonlinear dynamical sys-
tem into a single ordinary differential equation (ODE)
for one of the state variables. However, this is possible

1 We refer to the method as reduction of dimension, rather than
reduction of order, as in many cases the differential order is
unchanged. Rather, we are eliminating scalar functions, and
hence, the number of unknown scalar functions is reduced. This
method could also be referred to as reduction of scalar dimen-
sion.
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716 H. A. Harrington, R. A. Van Gorder

only when the system reduces to an ODE; if the reduc-
tion is instead to an integro-differential equation, the
process is not algorithmic and specific cases must be
handled with more individual care. Our focus shall be
on dynamical systems giving chaotic dynamics, but the
approach can certainly be applied for non-chaotic ODE
systems. We give an overview of reduction of dimen-
sion, after which we demonstrate in several ways why
one might wish to apply this technique.

With the wide range of numerical methods avail-
able for solving nonlinear first-order ODE systems of
high order, one may wonder why it might be advanta-
geous to convert such systems into a single higher-order
ODE. We shall mention several situations in which the
differential elimination, and more generally reduction
of dimension, may prove useful. We then outline the
paper.

Often times, if one is trying to approximate the solu-
tion to a nonlinear system through some sort of ana-
lytical approximation, via series, perturbation, or more
complicated approaches, one quickly finds that the cou-
pled equations require balancing many terms coming
from the expansion for each of the state variables. In
the case of a single state variable governed by a higher-
order ODE, one needs only track terms in a single
asymptotic expansion. This approach has been applied
when using Taylor series, approximate Fourier series,
and asymptotic expansions in other types of basis func-
tions to the solution of a system of nonlinear ODE. In
hybrid analytic–numeric methods, such as the homo-
topy analysismethod [6], such reductions of a system to
a single equation also simplify the optimization prob-
lem which is solved to obtain the error-minimizing
solution (see, for instance, [2], where the present
approach is used in such a capacity). Therefore, the
reduction of dimension can greatly reduce the complex-
ity of analytical calculations under several frameworks.

Contraction maps or Lyapunov functions are use-
ful tools for discussing the convergence of solutions
to nonlinear dynamical systems to large-time steady
or quasi-steady dynamics. In situations where contrac-
tion maps or Lyapunov functions are known for a given
dynamical system, the state variable governed by a sin-
gle higher-order ODE necessarily results in a contrac-
tionmap in the single state variable. However, as is well
known to those studying stability of nonlinear systems,
it is not often easy to obtain contraction maps for com-
plicated systems.Aswe shall showhere, it is possible to
use the reduction of a system to a single higher-order

ODE in order to construct a contraction map for the
state variable governed by the aforementioned higher-
order ODE. The existence of such a map can then be
used to deduce the large-time dynamics of the state
variable, as well as for the other state variables in the
original system. One example of this is given in [1],
and other examples are provided in Sect. 5.

Related to both the topic of analytical approx-
imations and Lyapunov functions would be long-
time dynamics and equilibrium behavior of nonlinear
dynamical systems. Indeed, in order to study the equi-
librium structure of a high-order system of ODEs, one
must solve a coupled system of nonlinear algebraic
equations in order to recover the fixed points for the
state variables. First reducing the system to a single
ODE allows one to obtain a single nonlinear algebraic
equation for the fixed point of a single state variable,
which can then be used to recover the fixed points of
the other state variables. Therefore, when such a reduc-
tion to a single ODE is possible, the need to solve a
nonlinear algebraic system for all of the fixed points
simultaneously is eliminated, resulting in what is often
a far less computationally demanding problem.

Another topic is great recent interest in nonlinear
science has been both the synchronization of chaos
[7] and the control of chaos. In situations where one
is interested in mitigating the possibility of emergent
chaos, one can couple a chaotic system to various
control terms, or indeed to additional dynamical sys-
tems, which may lend a degree to stability. Under such
approaches, one often increases the complexity or even
the dimension of the dynamical system being solved.
As such, methods to reduce the dimension of such sys-
tems could improve compatibility. Furthermore, since
the control of chaos is often linked to a control term
which itself is determined by a Lyapunov function, the
construction of contraction maps through the reduction
approach outlined here could be of great use.

As stated before [8], the competitive modes anal-
ysis gives an interesting link between the geometry
of phase space possibly yielding chaotic trajectories
(recall that the competitive modes requirements appear
to be a necessary, albeit not sufficient, condition for
chaos [9–14]). Conversely, the differential elimination
may cast light into the geometry of solutions in the
space of derivations. Since this result of the differen-
tial elimination is a single higher-order ODE, and since
any chaos emergent from the nonlinear system should
be encoded in the single higher-order ODE, the differ-
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Reduction of dimension for nonlinear dynamical systems 717

ential algebraic structure of such equations may cast
light into practical geometric tools by which one may
study systems in which chaos is observed. In particu-
lar, through this reduction approach, the calculation of
mode frequencies in the standard competitive modes
analysis becomes much simpler.

This paper is outlined as follows. In Sect. 2, we
provide an algorithmic approach, to differential elim-
ination for nonlinear dynamical systems based upon
differential algebra. First laying out the general the-
ory, we then give specific MAPLE code for perform-
ing the differential elimination in a systematic man-
ner. The algorithmic approach is useful in the case
where the dynamical system can be reduced to a sin-
gle ODE in terms of only one of the state variables. In
Sect. 3, we implement the approach in order to reduce
a variety of chaotic and hyperchaotic systems, find-
ing that the form of the nonlinearity in the dynamical
system will strongly influence the reducibility proper-
ties.2 However, in cases where the dynamical system
is not reducible using differential elimination, one may
still obtain more complicated reductions, for instance
in terms of integrals, resulting in more complicated
integro-differential equations for the reduced state vari-
able. The possible results are illustrated through con-
crete examples for the Rössler system (which is com-
pletely reducible), theLorenz system (which is partially
reducible—that is, reducible in some but not all state
variables), and the Qi–Chen–Du–Chen–Yuan (which
is irreducible under differential elimination, but which
can be reduced to an integro-differential equation). We
give summarizing observations regarding the reducibil-
ity of dynamical systems in Sect. 4.

The remainder of the paper is devoted to applica-
tions of reduction of dimension for dynamical systems.
In Sect. 5, we demonstrate that reduction of dimen-
sion can be useful for obtaining contraction maps and
Lyapunov functions, which in turn may be used to
determine asymptotic stability of dynamical systems
and also to control chaos in such systems. In Sect. 6,
we demonstrate that reduction of dimension can be
used to simplify calculations involved in certain tech-
niques for studying the solutions of nonlinear dynami-
cal systems. Indeed, when applicable, we find that the

2 Note that we also provide a long list of systems with nondi-
mensional parameters in the Appendices, which could prove a
useful resource for those wishing to have a unified list of chaotic
and hyperchaotic systems and references for each system.

approach greatly reduces the number of nonlinear alge-
braic equations required to be solvedwhen constructing
trajectories in state space via undetermined coefficient
methods by a factor of 1/n, where n is the dimension
of the dynamical system, meaning that the number of
equations needing to be solved will not increase with
the size of the system. Furthermore, when applying the
competitivemodes analysis (which is a type of diagnos-
tic criteria for finding chaotic trajectories in nonlinear
dynamical systems), we find that only one binary com-
parison is needed if one first reduces the dimension of
the dynamical system so that there is a single equation
for one state variable. In contrast, there are normally of
order 2n−1 comparisons needed for an n-dimensional
dynamical system. In Sect. 7, we provide a discussion
and possible avenues for future work.

2 Algebraic approach to differential elimination

Systems of differential equations are ubiquitous and
widely studied. Ritt [15] and Kolchin [16] pioneered
the field of differential algebra, an algebraic theory for
studying solutions of ordinary and partial differential
equations. We are particularly interested in differential
elimination, an algorithmic subtheory that can simplify
systems of parameterized algebraic differential equa-
tions. This permits one to reduce the dimension of a
dynamical system so that one is left with a single ODE
in the state variable.

2.1 Algebra preliminaries

Here we briefly review concepts from algebra and dif-
ferential algebra. For reference books in differential
algebra, see [15,16]. If I is a subset of a ring R, then
(I ) is the (algebraic) ideal generated by I . Let I be an
ideal of R. Then

√
I denotes the radical of I . A deriva-

tion over a ring R is a map R �→ R which satisfies (we
write ȧ is the derivative of a), for every a, b ∈ R,

˙(a + b) = ȧ+ ḃ and ˙(a b) = (ȧ)b+ a(ḃ). The field of
differential algebra is based on the concept of a differ-
ential ring (resp. field), which is a ring (resp. field) R
endowed with a set of derivations that commutes pair-
wise. A differential ideal [I ] of a differential ring R is
an ideal of R stable under the action of derivation.

Differential algebra is more similar to commutative
algebra than analysis. In commutative algebra, Buch-
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718 H. A. Harrington, R. A. Van Gorder

berger solved themembership problem (tests whether a
given polynomial is contained in a given ideal) through
the theory ofGröbner bases [25]. Fromalgebraic geom-
etry, we know the set of polynomials which vanish over
the solutions of a given polynomial system form an
ideal and even a radical ideal [26]. In the case of dif-
ferential equations, the set of differential polynomials
which vanish over the analytic solutions of a given sys-
tem of differential polynomial equations form a differ-
ential ideal and even a radical differential ideal [15].
Ritt solved the theoretical problem (of membership for
radical differential ideals) and developed algorithmic
tools to solve systems of polynomial ODE and PDEs;
however, Ritt’s algorithm requires factorization.

Due to the complexity of factorization, Boulier and
co-authors avoided it by developing the Rosenfeld–
Gröbner algorithm, based on the work of Seidenberg
and Rosenfeld, and incorporating Gröbner bases [19,
20,22]. Since then, the algorithm has been improved
both theoretically and practically [17,18,21] and it no
longer requires Gröbner bases. It is available in the
DifferentialAlgebra package in MAPLE [17]
and SageMath as an interface for the BLAD and BMI
libraries [27,28].

Algorithmically, differential elimination involves
manipulation of finite subsets of a differential polyno-
mial ring R = K {U } where K is the differential field
of coefficients (i.e., K = Q), and U is a finite set of
dependent variables. The elements of R are differen-
tial polynomials, which are polynomials built over the
infinite set of all derivativesΘU , of the dependent vari-
ables. Considering a system Σ of polynomial differen-
tial equations, here, we consider the Lorenz system of
three ordinary differential equations:

ẋ1 = a(x2 − x1) ,

ẋ2 = x1(b − x3) − x2 ,

ẋ3 = x1x2 − cx3 .

(1)

The Lorenz system can be rewritten as:

Σ =

⎧
⎪⎨

⎪⎩

−ẋ1 + a(x2 − x3) = 0 ,

−ẋ2 + x1(b − x3) − x2 = 0 ,

−ẋ3 + x1x2 − cx3 = 0 .

(2)

The Rosenfeld–Gröbner algorithm takes as an input
a differential system Σ and a ranking. A ranking >

is any total ordering over the set ΘU of all deriva-

tives of the elements of U which satisfies the follow-
ing axioms: a < ȧ and a < b ⇒ ȧ < ḃ for all
a, b ∈ ΘU . The Rosenfeld–Gröbner algorithm trans-
forms Σ into finitely many systems called regular dif-
ferential systems, which reduces differential problems
to purely algebraic ones that are triangular. The next
step is purely algebraic and transforms the regular dif-
ferential system into finitely many characteristic pre-
sentations,C1, . . .Cr . Rosenfeld–Gröbner outputs this
finite family C1, . . .Cr of finite subsets of K {U } \ K ,
where eachCi defines a differential ideal [Ci ]. The rad-
ical

√[Σ] of the differential ideal generated by Σ is
the intersection presented by characteristic sets:

√[Σ] = [Ci ] ∩ · · · ∩ [Cr ].

Note differential ideals [Ci ] do not need to be prime;
however by Lazard’s lemma, they are necessarily rad-
ical. Differential algebra elimination has proven use-
ful for parameter estimation, identifiability, and model
reduction of biological and chemical systems [23,24].

2.2 Computational method

We demonstrate reduction in dimension via differential
elimination algorithm RosenfeldGroebner in the
DifferentialAlgebra package implemented in
MAPLE. For the sake of using a concrete example, we
choose the Lorenz system. First, we call the package:

with(DifferentialAlgebra) :

Next we input the Lorenz system:

sys := [−(diff(x1(t),t)) + a ∗ (x2(t) − x1(t)),

−(diff(x2(t),t)) + x1(t) ∗ (b − x3(t)) − x2(t),

−(diff(x3(t),t)) + x1(t) ∗ x2(t) − c ∗ x3(t)]

Next we form our differential ring, embedding the
rank of dependent variables in blocks and inde-
pendent variables in derivations. Since we are
consideringordinarydifferential equations, derivations
are set to one ordering, time t . We remark that the
DifferentialAlgebra package enables differen-
tial elimination of PDEs by including additional inputs
for the derivations (e.g., derivations=[u,x,t].
Note, sys is assumed to have coefficients in the field
Q[x1, x2, x3] obtained by adjoining the independent
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Reduction of dimension for nonlinear dynamical systems 719

variables to the field of rationals, and symbolic param-
eters a, b, c are considered arbitrary in the coefficient
field. To form the differential ring, we input:

R := DifferentialRing(blocks

= [x3,x2,x1],derivations = [t])
Note that x1 stands to the rightmost place on the list
which identifies that we are attempting to reduce the
differential equation to only one variable, i.e., x1(t).
This ranking eliminates x3 with respect to x2, and
then eliminates x2 with respect to x1. We now call the
Rosenfeld–Gröbner algorithm for our system and dif-
ferential polynomial ring:

G := RosenfeldGroebner(sys,R)

simplify(Equations(G[1],solved))

This will return the characteristic presentation (which
should be understood as an intersection), with the equa-
tions given by the ranking, with the final equation a
single ODE for x1(t), provided that it exists and can
be computed by the algorithm. In some cases, the algo-
rithmwill keep running and therefore should eventually
be terminated by the user. For such cases, it is unlikely
that a reduction of the specified form exists. However,
aswe shall consider in the next section, when the reduc-
tion is to an integro-differential equation, rather than an
ODE, the approach will not identify the reduced equa-
tion.

3 Reduction of dimension: applications

Here we apply the method of differential elimina-
tion to several nonlinear dynamical systems known to
give chaos, in order to see if these equations can be
reduced. We first apply the algorithmic approach out-
lined in Sect. 2, finding that the approach gives a com-
plete reduction (all state variables can be isolated and
expressed as the solution to single uncoupled ODEs),
a partial reduction (one or more, but not all, state vari-
ables can be isolated and expressed as the solution
to single uncoupled ODEs), or returns no reduction
(the algorithm does not complete in a fixed amount
of time), in which case none of the state variables can
be expressed as a solution to a single ODE reducible
from the original system. For simplicity, we shall only
consider autonomous systems.

We consider a number of examples of chaotic sys-
tems in Table 1, with the results of the differential elim-
ination algorithm given.We also give a summary of the

Table 1 List of chaotic systems and their reduction properties

System Dynamics Reducible?

Lorenz [29] 3D:1-2-2 Partial

Modified Chua’s circuit [31] 3D:3-1-1 Complete

Chen-Lee [32] 3D:2-2-2 Partial

Rabinovich–Fabrikant [33] 3D:3-3-3 No

Rössler [34] 3D:1-1-2 Complete

Chen [35] 3D:1-2-2 Partial

Lü [36] 3D:1-2-2 Partial

T-system [37,38] 3D:1-2-2 Partial

Qi et al. [39] 4D:3-3-3-3 No

Qi et al. [40] 3D:2-2-2 No

Generalized Lorenz [41,42] 3D:2-2-2 No

Blue-sky catastrophe [43,44] 3D:3-3-3 No

Lorenz–Stenflo [45,46] 4D:1-2-2-1 Partial

Genesio–Tesi [47] 3D:1-1-2 Partial

Arneodo–Coullet–Tresser [48] 3D:1-1-3 Partial

The numbers in the dynamics column indicate the dimension of
the system and then degree of each polynomial in the respec-
tive reaction functions. For instance, if ẋ = A(x, y, z), ẏ =
B(x, y, z), ż = C(x, y, z), then 3D:deg(A)−deg(B)−deg(C) is
reported, where deg(A) denotes the degree of A, and so on.When
the systemhas the property that itmay be reduced to a singleODE
in any state variable, we say that it is completely reducible, and
record a ‘Complete.’ If the system may be reduced to an ODE in
one or more, but not all, state variables, we say the systems are
partially reducible and record a ‘Partial.’ Finally, when a system
is not reducible to a single ODE in any state variable, we record a
‘No.’ We note that specific forms of some equations can change
from paper to paper, so we record the specific equations used in
“Appendix 1”

dynamics of the example equations selected. Since the
form of these equations may vary through the litera-
ture, we give a list of the specific form of the equations
considered, in “Appendix 1”. Note that we have consid-
ered the differential elimination algorithm for the arbi-
trary parameter values listed in “Appendix 1”. Table 1
demonstrates that the structure of the dynamical system
tends to play a strong role in whether the system can
be reduced. Indeed, equations with a single nonlinear-
ity tend to be completely or partially reducible; hence,
at least one state variable can be solved for via a sin-
gle nonlinear ODE. On the other hand, the equations
with many nonlinear terms or higher-order degree of
nonlinearity (we consider only equations with polyno-
mial nonlinearities) tend more often to be irreducible
using the approach.Of the listed equations, note that the
Rössler system is one of the few completely reducible
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720 H. A. Harrington, R. A. Van Gorder

Table 2 List of hyperchaotic systems and their reduction prop-
erties

System Dynamics Reducible?

Rössler [49] 4D:1-1-2-1 Complete

Chen [50] 4D:1-2-2-1 Partial

Lü [51] 4D:1-2-2-2 No

Modified Lü [52] 4D:2-2-2-1 No

Wang-Liu [53] 4D:1-2-2-1 Partial

Jia [54] 4D:1-2-2-2 Partial

QWWC system [55] 4D:2-2-2-2 No

The labeling is the same as given in Table 1.We note that specific
forms of some equations can change from paper to paper, so we
record the specific equations used in “Appendix 2”

systems, lending validity to the belief that it is indeed
oneof the simplest possible continuous-timedynamical
systems giving chaos. Meanwhile, the commonly stud-
ied Lorenz system is only partially reducible under the
approach. More complicated systems tend to be irre-
ducible under the algorithm, and many of these give
more complicated dynamics such as multiple scroll
attractors.

Note that the algorithm returns a ‘No’ if a reduction
is not obtained within a given time interval. For cases
where the algorithm found a reduction, the computa-
tion time was fairly quick. We are therefore comfort-
able in assuming that a reduction to an ODE does not
exist in cases where the algorithm times out. For such
cases, the system may still admit a reduction, but not
strictly in derivatives of one of the state variables. One
such example would be a system which is reducible
to an integro-differential equation in one of the state
variables, but never to simply an ODE.

Wenext consider hyperchaotic systems (chaotic sys-
tems giving two or more positive Lyapunov expo-
nents) in Table 2. Again, we find that the more com-
plicated the functional form of the nonlinearities, the
less likely a system seems to be reducible. Further-
more, hyperchaotic generalizations of known chaotic
systems appear to maintain their reducibility proper-
ties, since often a simple additional equation is added
to make a chaotic system hyperchaotic. The hyper-
chaotic Rössler system is completely reducible, as was
the related chaotic Rössler system, again suggesting
that the chaotic and hyperchaotic Rössler systems are
some of the simplest systems which still exhibit chaos
and hyperchaos, respectively.

The results indicate that completely reducible sys-
tems are perhaps the simplest systems giving chaos
or hyperchaos. Again, this would support the quali-
tative and topological claims that the Rössler systems
are some of the simplest possible equations permitting
chaos [56], as they each involve only a single quadratic
nonlinearity. On the other hand, systems with stronger
polynomial nonlinearities, or systems with many non-
linear terms, appear to often be irreducible under dif-
ferential elimination. Note that for cases where the
reduction might involve integrals, resulting in a type
of integro-differential equation, the differential elim-
ination algorithm would miss such a reduction, even
though it exists. This is due to the fact that the differen-
tial elimination algorithm is working over the ring of
derivations, which does not include integrals. Indeed,
since integral operators are fairly cumbersome to intro-
duce compared to their differential operator counter-
parts (wediscuss this later in Sect. 7), obtaining an algo-
rithmic approach including integrals would be chal-
lenging. Therefore, the differential elimination algo-
rithm outlined in Sect. 2 appears to be a very useful
tool for reducing the dimension of dynamical systems,
provided that a reduction to a singleODEexists. For the
more complicated models, we find the need to proceed
on a case-by-case basis withmanual manipulations due
to any integration needed.

We demonstrate reduction of dimension for chaotic
systems into single higher-order ODEs in the next three
subsections. We pick a case where all state variables
can be isolated (the Rössler system), a case where one
of the state variables can be isolated in terms of a dif-
ferential equation (the Lorenz system), and finally a
case where none of the state variables can be isolated
in terms of a differential equation (the Qi–Chen–Du–
Chen–Yuan system) so that any reduction would nec-
essarily involve integrals. For all cases considered, we
let x, y, z ∈ Cn(R) where n is the dimension of the
relevant dynamical system, and we take a, b, c ∈ R to
be parameters.

3.1 Rössler system

The Rössler equation [34] reads

ẋ = −y − z ,

ẏ = x + ay ,

ż = b + z(x − c) .

(3)
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Fig. 1 Phase space plot for the chaotic attractor in the Rössler
system corresponding to a = 0.2, b = 0.2, c = 5.7

We first obtain the ODE for y(t). Note from the second
equation that x = ẏ − ay, so that ẏ = ÿ − a ẏ and
hence from the first equationwe have z = −ÿ+a ẏ− y.
Placing these into the third equation, and performing
algebraic manipulations, we obtain

...
y −a ÿ+ ẏ− (ÿ − a ẏ + y) (ẏ − ay − c)+b = 0. (4)

Note that this equation is third order, and therefore the
information of the three-dimensional system (3) can be
encoded in this single ODE. By similar manipulations,
one may arrive at an equation for x(t),

(a + c − x)2
{(

d

dt
− (x − c)

)
ẍ − aẋ + x + b

a + c − x
− b

}

= 0 ,

(5)

and an equation for z(t),

z3
(
d2

dt2
− a

d

dt
+ c

)
ż − b

z
+ z3 ż − az4 + cz3 = 0 .

(6)

In Fig. 1, we plot a numerical simulation of the chaotic
attractor for the Rössler system, while in Fig. 2, we
give the time series for the numerical solution y(t)
to (4), which was the equation for y(t) obtained via

Fig. 2 Time series plot of the function y(t) in (4) when a = 0.2,
b = 0.2, c = 5.7. This function encodes all of the information
for the chaotic attractor in the Rössler system corresponding to
a = 0.2, b = 0.2, c = 5.7

reduction of dimension. The function y(t) from (4)
encodes all of the information from the chaotic attrac-
tor.

3.2 Lorenz system

The Lorenz system [29] is given by

ẋ = a(y − x) ,

ẏ = x(b − z) − y ,

ż = xy − cz .

(7)

Observing from the first two equations that

y = x + 1

a
ẋ (8)

and

z = b − ẍ + (1 + a)ẋ + x

ax
, (9)

the third equation can be used to obtain a single ODE
for the state variable x(t), viz.,

x2
(
d

dt
+ c

)
ẍ + (1 + a)ẋ + x

x
+ ax4 + x3 ẋ − abcx2 = 0 .

(10)

This agrees with what one obtains from the differen-
tial elimination. On the other hand, we observe that the
algorithmic approach to differential elimination is use-
ful for situations in which there is no obvious route to
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reduce a system into a single equation (through elim-
inations and substitutions). A good example of this is
found when trying to obtain a differential equation for
the state variable z(t) alone.Using the differential elim-
ination, we arrive at a rather complicated equation of
the form

(b − z)(
...
z )2 + P1(z, ż, z̈)

...
z + P2(z, ż, z̈) = 0 , (11)

where P1 and P2 are complicated polynomials that we
do not list for the sake of brevity. Interestingly, this
is a fully nonlinear equation, since the highest order
derivative enters into the equation nonlinearly. In con-
trast, the equation obtained for the state variable x(t)
is quasi-linear, since it is linear in the highest deriva-
tive. One could differentiate the equation for z(t) in
order to isolate the highest derivative, but by doing so
one would increase the differential order of the system,
thereby decreasing the regularity of the system. This is
particularly important in cases where the solution z(t)
may only be C3(R).

When a system is nonlinear, there may of course be
forms of the nonlinearity which do not permit one to
obtain an equation for a single state variable in terms of
that state variable and its derivatives. A good example
of this is the state variable y(t) in the Lorenz system.
The algorithmic differential elimination finds no closed
differential equation for y(t). As it turns out, the rea-
son for this is that any equation governing y(t) alone
will necessarily involve integral terms which cannot be
eliminated (due to the nonlinearity of the equation). To
see this, note that if we consider the first equation in
the Lorenz system, which may be written in the form
(eat x)′ = aeat y, we find

x(t) = x0 + ae−at
∫ t

0
eas y(s)ds . (12)

Here x0 is the initial value of the state x(t), that is
x(0) = x0. Yet, from the second equation in the Lorenz
system, we have z = b − (ẏ + y)/x , which yields

z(t) = b − ẏ + y

x0 + ae−at
∫ t
0 e

as y(s)ds
. (13)

Placing the representations for x(t) and z(t) into the
third equation of the Lorenz system, and perform-
ing algebraic manipulations to simplify the resulting
expression, we obtain

Fig. 3 Phase space plot for the chaotic attractor in the Lorenz
system corresponding to a = 10, b = 28, c = 8/3

(ÿ + (1 + c)ẏ + cy)

(

x0 + ae−at
∫ t

0
eas y(s)ds

)

+(ẏ + y)

(

ay − a2e−at
∫ t

0
eas y(s)ds

)

+y

(

x0 + ae−at
∫ t

0
eas y(s)ds

)3

−cb

(

x0 + ae−at
∫ t

0
eas y(s)ds

)

= 0 . (14)

Note that the equation both involves an integral and is
nonautonomous.

In Fig. 3, we plot a the numerical solution to the
chaotic attractor for the Lorenz system, while in Fig. 4,
we give the time series for the numerical solution for
the function x(t) governed by (10), whichwas obtained
via reduction of dimension. The function x(t) from
(10) encodes all of the information from the chaotic
attractor.

3.3 Qi–Chen–Du–Chen–Yuan system

We now consider the Qi–Chen–Du–Chen–Yuan
(QCDCY) system [40], which is given by

ẋ = a(y − x) + yz ,

ẏ = bx − y − xz ,

ż = xy − cz .

(15)
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Fig. 4 Time series plot of the function x(t) in (10) when a = 10,
b = 28, c = 8/3. This function encodes all of the information
for the chaotic attractor in the Lorenz system corresponding to
a = 10, b = 28, c = 8/3

The differential elimination algorithm indicates there
is no reduction to a single ODE in any of the three state
variables. This system has a quadratic nonlinearity in
each equation, and this added complication is behind
the difficulties in obtaining such a reduction. However,
we may still obtain an equation for a single state vari-
able, if we are willing to include integral terms. Due to
the complexity in obtaining such an equation, we shall
restrict our attention to finding a single equation for the
state variable z(t), noting that similar approaches can
be used to find a single equation for either of the other
two state variables, x(t) or y(t).

Let us begin by noting that the second equation in
the QCDCY system implies (et y)′ = et (b− z)x , while
placing this into the third equation in the QCDCY sys-
tem gives (a+z)(ż+cz) = xe−at (eat x)′ = x(ẋ+ax).
This, in turn, implies that state variables x(t) and z(t)
satisfy

e2at (x(t))2 = x20 + 2
∫ t

0
e2as(a + z(s))(ż(s)+ cz(s))ds .

(16)

where x(0) = x0. The first equation in the QCDCY
systemhas not been used, andweplace this relation into
that equation to obtain a single equation for the state
variable z(t). After several algebraic and differential
manipulations, we arrive at the single equation

2e2at
(

1 − a − ż

a + z

)

(ż + cz)(a + z)
(
x20 + J [z, ż])

+ 2
(
x20 + J [z, ż]) d

dt

(
e2at (ż + cz)(a + z)

)

Fig. 5 Phase space plot for the chaotic attractor in the QCDCY
system corresponding to a = 35, b = 80, c = 3

− 2e4at (ż + cz)2(a + z)2

− 2(b − z)(a + z)
(
x20 + J [z, ż]s)2 = 0 , (17)

where we have defined the integral operator

J [z, ż] = 2
∫ t

0
e2as(a + z(s))(ż(s) + cz(s))ds . (18)

Similar results can be obtained for the other state
variables. The fact that the obtained equations involve
an integral operator which cannot simply be differen-
tiated away demonstrates why the differential elimina-
tion algorithm was not useful for this case. Still, per-
forming the manipulations by hand, we have reduced
the fairly complicated QCDCY system into a sin-
gle integro-differential equation, thereby reducing the
dimension of the original system.

In Fig. 5, we plot the numerical solution for a chaotic
attractor arising from the QCDCY system, while in
Fig. 6, we give the time series for the numerical solu-
tion z(t) to (17), which was obtained via reduction of
dimension. The function z(t) from (17) encodes all of
the information from the chaotic attractor.

4 Reductions of n-dimensional dynamical systems

Wenowgive some summarizing remarks based onwhat
we have seen in the previous sections. We shall assume
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724 H. A. Harrington, R. A. Van Gorder

Fig. 6 Time series plot of the function z(t) in (17) when a = 35,
b = 80, c = 3. This function encodes all of the information for
the chaotic attractor in the QCDCY system corresponding to
a = 35, b = 80, c = 3

that each system is coupled through at least one state
variable (otherwise the state variables naturally sepa-
rate into distinct lower-dimension equations, and the
approach is not needed).

4.1 Linear systems

For first-order linear systems of dimension n, there is
always a reduction into a single higher-orderODE.This
follows from theprocess ofGaussian elimination. In the
case that the matrix of coefficients for such a first-order
system is full rank, the resulting higher-order ODEwill
be of order n. If the matrix of coefficients is singular,
then the resulting higher-order ODE will be of order
less than n.

4.2 Reducible nonlinear systems

For first-order nonlinear systems of dimension n, there
are multiple possibilities, owing to the structure of the
nonlinearity.

In cases where the system permits the complete dif-
ferential elimination (an example being the Rossler
equation), all state variables in a first-order nonlinear
system can be expressed in terms of a higher-order
ODE. Note, however, that it is possible for the order
of the single ODE to be different from the dimension n
of the first-order system. As an example of this point,
consider the system

ẋ = x − y − z ,

ẏ = x2 ,

ż = x − x3 .

(19)

Clearly, differentiation of the first equation gives ẍ =
ẋ − ẏ − ż = ẋ − x2 + x − x3. So, we obtain

ẍ − ẋ − x + x2 + x3 = 0 , (20)

which is a second-order equation for the state variable
x(t), even though the original system was first order.
A similar example can be found in [1], where a fourth-
order nonlinear dynamical system was reduced to a
single second-order nonlinear ODE.

It is possible for a system to be reduced to a sin-
gle equation, which is not an ODE. This was evident
even for the Lorenz equation, where an equation for
one of the state variables involves an integral term in
addition to derivative terms. Note that the equation was
not closed under any number of differentiations, due
to the form of the integral terms. As such, the single
reduced equation for the state variable could never be
expressed strictly as an ODE of any finite order. Note
that this can occur for one of the state variables, while a
different state variablemight satisfy a finite orderODE.
For such cases, the nonlinearity in the system results in
their being certain favored state variables with which
to perform the reduction to a single ODE.

4.3 Differentially irreducible nonlinear systems

We have observed that for more complicated nonlin-
ear dynamical systems, there is no reduction to a single
ODE in one state variable.While it may be the case that
differential elimination does not pick up an ODE that
does exist, it seems as though the failure of differential
elimination is a sign that integrations will be needed in
order to reduce the dimension of such systems. Indeed,
when integrations of this kind are called for, the manip-
ulations are no longer confined to the specified differ-
ential ring, and the differential elimination cannot be
performed. While one can attempt these integrations
manually, as opposed to algorithmically, obviously it
would be desirable to have some kind of algorithmic
approach. Perhaps one may adjoin integral operators
to the differential ring, in order to perform reductions
for more complicated nonlinear systems. This would
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Reduction of dimension for nonlinear dynamical systems 725

likely work in cases like the Lorenz system, for which
there is partial reducibility under differential elimina-
tion. For instance, if one was to define a new variable
Y (t) = ∫ t

0 e
as y(s)ds, then one would obtain a nonau-

tonomousODE forY (t) from equation (14). Therefore,
this fairly simple integral transformation, in addition
to differential operators can reduce the dimension of
the Lorenz system with respect to the state variable
y(t). However, in cases like that of the QCDCY sys-
tem, note that the form of the integral operator given
in (18) is rather complicated, depending nonlinearly on
both the state variable z(t) and its derivative ż(t). For
such cases, there is no combination of elementary inte-
gral transforms that can be adjoined to the differential
ring which would permit reduction of dimension to a
single ODE. As such, it appears as though reduction of
dimension for certain more complicated systems will
result in reductions to integro-differential equations,
rather than ODEs, for some fundamental reason related
to how complicated the original dynamical system is.
Therefore, the study of possible algorithmic methods
for the reduction of dimension for dynamical systems
into single scalar integro-differential equations would
be an interesting and potentially very useful area of
future work.

5 Contraction maps and Lyapunov functions

Turning out attention now to practical applications for
reduction of dimension, recall that contraction maps
and Lyapunov functions are useful tools for studying
the asymptotic stability of nonlinear dynamical sys-
tems. In this section, we use the three examples worked
explicitly in Sect. 3 in order to demonstrate the utility of
reduction of dimension for findingLyapunov functions.
Using these results, we can recover stability results for
these dynamical systems which were obtained through
other approaches, andwhich agree with existing results
in the literature.

5.1 Rössler system

The Rössler system has two equilibrium values, ±y∗,
for y(t), and the constant y∗ must satisfy the quadratic
equation

a(y∗)2 + cy∗ + b = 0 . (21)

In order to discover a Lyapunov function for theRössler
system, it is tempting to assume a bowl-shaped map
of the form αx2 + βy2 + γ z2, or minor variations
on this theme involving higher power polynomials of
even order, but the approach evidently proves fruit-
less. Therefore, we shall use one of the three equations
obtained for the isolated state variables of the Rössler
system.

Consider Eq. (4) for the Rössler system (3). Let us
write Y (t) = y(t) − y∗ in the neighborhood of either
equilibrium value y∗. This transformation will prove
useful, as the Lyapunov function needs to vanish at the
equilibrium value selected. (There is therefore the need
to construct such a function in a neighborhood of each
equilibriumpoint.) Under this transformation, (4) is put
into the form

...
Y − aŸ + Ẏ − (

Ÿ − aẎ + Y
) (
Ẏ − aY

) = 0 . (22)

Let us define a function m = Ÿ − aẎ + Y so that (22)
is put into the form

ṁ − (Ẏ − aY )m = 0 . (23)

Observe that (23) can be written as

ṁ − eat
(
e−atY

)′
m = 0 . (24)

From this, we recover

Ÿ−aẎ+Y = m = m0 exp

(∫ t

0
eaζ (e−aζY (ζ ))′dζ

)

,

(25)

where m0 is a constant of integration. As we are inter-
ested in recovering information about the asymptotic
stability of the Rössler system, let us pick the initial
condition Y (0) = ε. This corresponds to setting the
initial condition such that it is containedwithin a neigh-
borhood of the equilibrium value. Let us also restrict
|a| < 2 (this will simplify the mathematics and is con-
sistent with the physics of the Rössler system). Then,
we obtain

Y (t) = εeat/2
{

cos

(√
4 − a2

2
t

)

+ C sin

(√
4 − a2

2
t

)}

+ m0

∫ t

0
K (t, s) exp

(∫ s

0
eaζ (e−aζY (ζ ))′dζ

)

ds ,

(26)
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where C is a constant that will depend on the initial
value of Ẏ (0) (the value of which will not impact our
analysis) and K (t, s) is the kernel

K (t, s) = e
a
2 (t−s) sin

(
4 − a2

2
(t − s)

)

. (27)

Observe that for −2 < a < 0 the map is a contraction.
Given arbitrarily small ε > 0, for large enough time
t̃(ε) > 0, the solution Y (t) will lie in a neighborhood
−ε < Y (t) < ε for all t > t̃(ε). Therefore, Y → 0 as
t → ∞. Yet, by definition of Y (t), this implies y → y∗
as t → ∞. Using this, one may shown that x → −ay∗
and z → −y∗ as t → ∞. Hence, we have shown
that a < 0 gives a stable solution, which was already
known from different work. The nice thing about this
approach is that it allows us to bypass a linear stability
analysis involving the calculation of eigenvalues at the
algebraic solution to y∗ found from (21). Indeed, we
did not even need to calculate the equilibrium value y∗
for the present analysis, as the analysis holds for an
arbitrary equilibrium value satisfying (21).

5.2 Lorenz system

In order to find a Lyapunov function for the Lorenz
system in a neighborhood of the zero equilibrium
(x, y, z) = (0, 0, 0), let us assume a bowl-type func-
tion of the form

V (x, y, z) = αx2 + βy2 + γ z2 , (28)

where α > 0, β > 0, and γ > 0 are constant param-
eters to be selected. Recall that physically interesting
model parameters a, b, and c are positive. Then, the
time derivative of V is given by

1

2
V̇ = −αax2−βy2−γ cz2+(αa+βb)xy+(γ −βb)xyz .

(29)

Clearly, we should take γ = βb. Note that

−(
√

αax−√
β y)2 = −αax2−βy2+2

√
αβaxy . (30)

Then,

1

2
V̇ = −(

√
αax−√

β y)2−γ cz2+(αa+βb−2
√

αβa)xy ,

(31)

hence V̇ ≤ 0 provided that βb < 2
√

αβa − αa (since
this would imply −αax2 − βy2 + (αa + βb)xy < 0).
Let us pick β = αa. Then, the condition reduces to
b < 1. As α > 0 was arbitrary, we set α = 1

2 . This
means that whenever a > 0, 0 < b < 1, and c > 0,
there exists a Lyapunov function

V (x, y, z) = 1

2
x2 + a

2
y2 + ab

2
z2 , (32)

since V (0, 0, 0) = 0, |V | → ∞ as |(x, y, z)| → ∞
(radially unbounded), and V̇ < 0 for (x, y, z) �=
(0, 0, 0). Interestingly, the condition< b < 1 is exactly
the stability condition known in the literature [30].
Therefore, parameters implying the existence of this
contraction map correspond to known stable parame-
ters.

Now, if we were to seek such a map for only one of
the state variables, then using what we have obtained
in Sect. 3, we find that there exists a contraction map

V̂ (x, ẋ, ẍ) = 1

2
x2 + a

2

(

x + ẋ

a

)2

+ ab

2

(

b − ẍ + (1 + a)ẋ + ax

ax

)2
(33)

for the state variable x(t). Then, one may verify ˙̂V <

0 away from the equilibrium x = 0. One can obtain
similar contraction maps in either of the other two state
variables.

5.3 Qi–Chen–Du–Chen–Yuan system

In order to find a contractionmap for theQi–Chen–Du–
Chen–Yuan (QCDCY) system,we beginwith the bowl-
shaped assumption for a Lyapunov function about the
equilibrium (x, y, z) = (0, 0, 0),

V (x, y, z) = αx2 + βy2 + γ z2 , (34)

where α > 0, β > 0, and γ > 0 are constant parame-
ters to be selected. Differentiating with respect to t and
using the three constituent equations of the QCDCY
system, we have

V̇ = (α−β+γ )xyz+(αa+βb)xy−αax2−βy2−γ cz2 .

(35)
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Since we need α > 0, β > 0, and γ > 0, we should
consider model parameters satisfying a > 0 and c > 0.
To remove the first term, which is hyperbolic in nature,
we should choose β = α + γ . Meanwhile, by the
removal of the second term, which is also hyperbolic,
we should set β = − a

bα for nonzero b. Since all other
parameters are positive, we must require b < 0. Then,
β = a

|b|α, and placing this into β = α + γ gives

γ = a−|b|
|b| . As we need γ > 0, this gives the added

restriction a > |b|. The parameter α is arbitrary, so we
take α = 1

2 . We therefore obtain

V (x, y, z) = 1

2
x2 + a

2|b| y
2 + a − |b|

2|b| z2 , (36)

and this candidate function is indeed a contraction map
satisfying V (0, 0, 0) = 0, V̇ < 0 for (x, y, z) �=
(0, 0, 0), and |V | → ∞ as |(x, y, z)| → ∞, provided
that the parameter restrictions a > |b|, b < 0, and
c > 0 hold. Therefore, under these parameter restric-
tions, the zero equilibrium is asymptotically stable for
the QCDCY system.

Whenweobtain a single equation for a state variable,
even one containing integrals, we may similarly obtain
a contraction map. Since we have obtained an equation
for the state variable z(t) in the QCDCY system in
Sect. 3, we shall choose to construct a contraction map
for that state variable here. Doing so, we find that

V̂ (z, ż) = a

|b|
e2at (ż + cz)2

x20 + 2
∫ t
0 e

2as(a + z(s))(ż(s) + cz(s))ds

+ e−2at
(

x20 + 2
∫ t

0
e2as(a + z(s))(ż(s) + cz(s))ds

)

+ a − |b|
|b| z2 (37)

satisfies ˙̂V < 0 for all z �= 0, given that a > |b|, b < 0,
and c > 0. Hence, V̂ (z, ż) is a contraction map for the
state variable z(t) when a > |b|, b < 0, and c > 0.
With this, we have determined the stability of the zero
equilibrium for the QCDCY system.

6 Computational considerations for chaotic
trajectories

There are a variety of methods available for trying to
find chaotic trajectories in nonlinear dynamical sys-

tems, and the approach highlighted in this paper does
not add to collection of tools, explicitly. However, the
reduction of dimension approach outlined in Sect. 2
can be used to make finding chaos in dynamical sys-
tems more efficient. To demonstrate this, we shall con-
sider two rather distinct approaches, namely, the unde-
termined coefficients method for obtaining chaotic tra-
jectories and the competitive modes analysis for identi-
fication of chaotic parameter regimes. For each of these
approaches, we show that an application of reduction
of dimension results in a simplification of each test for
chaos.

6.1 Calculation of trajectories via undetermined
coefficients

When attempting to analytically calculate chaotic tra-
jectories, even in an approximate sense, one often
reduces the dimension of the governing equations. The
reason for this lies in the fact that it is easier to consider
an expansion for one state variable, rather thanmultiple
state variables. To best illustrate this point, let us return
to the Rössler equation (3).

One popular method for approximating trajectories
of chaotic systems analytically is the undetermined
coefficient method [3–5]. Since Taylor series expan-
sions for nonlinear systems often have a finite region
of convergence centered at the origin, yet the chaotic
dynamics remain bounded in space, one often consid-
ers non-polynomial base functions. One popular choice
would be a function of the form

S
(
t; {

A j
} j=∞
j=−∞ , α

)
=

⎧
⎨

⎩

∑∞
j=0 A je−α j t for t ≥ 0 ,

∑∞
j=0 A− jeα j t for t < 0 .

(38)

In this expression, the A j ∈ R and the parameter
α > 0 are undetermined parameters which one typi-
cally will obtain in an iterative manner. Assuming such
an expansion in time, it makes sense to consider a
solution the Rössler system (3) of the form x(t) =
S(t; {

A j
} j=∞
j=−∞ , α), y(t) = S(t; {

Bj
} j=∞
j=−∞ , α), and

z(t) = S(t; {
C j

} j=∞
j=−∞ , α). Placing these equations

into (3), one would obtain an infinite system of nonlin-
ear algebraic equations for all of the coefficients and the
temporal scalingα > 0. In practice, onewould truncate
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Table 3 Number of algebraic equations needing to be solved
when J = 50, i.e., when 101 terms in the series expansions are
retained

System dimension Naive
equations

Equations after
reduction

3 303 101

4 404 101

5 505 101

10 1010 101

20 2020 101

50 5050 101

100 10,100 101

For systems with large dimension, the reduction drastically
reduces the number of equation needing to be solved

these expansions, taking the sum over−J ≤ j ≤ J for
some J > 0. As the solutions may converge slowly—
if they converge at all (owing to the nonlinearity), one
would need to solve 6J + 1 nonlinear algebraic equa-
tions.

Assume, instead, that we wish to solve (4) by the
approach described above. We would then insert the
expansion for y(t) into (4). Assuming that we can solve
the resulting nonlinear algebraic equations for the con-
stants

{
Bj

} j=∞
j=−∞ and α, we can then recover x(t) and

z(t) by recalling x = ẏ − ay and z = −ÿ + a ẏ − y.
From these expressions, it is simple to show An =
−(α|n| + a)Bn and Cn = −(α2n2 + aα|n| + 1)Bn

for all n ∈ Z. If we were to truncate the expan-
sion for y(t), in the manner described above, we
would need to solve 2J + 1 nonlinear algebraic equa-
tions for

{
Bj

} j=J
j=−J and α, while the coefficients for

x(t) and z(t) are immediately found once we know
these parameters. This means that by first reducing
the dimension of the ODE system, we would be able
to reduce the computational complexity of the prob-
lem by a factor of three. For higher-dimensional sys-
tem, the reduction in computational complexity will
scale as the dimension of the system itself. In other
words, a solution in term of the undetermined coeffi-
cient method will not depend on the size of the dynam-
ical system provided that the dynamical system can
be reduced in dimension to a single equation govern-
ing one state variable. See Table 3 for an example
comparing the number of algebraic equations need-
ing to be solved before and after reduction of dimen-
sion.

6.2 Competitive modes analysis: a check for chaos

The method of competitive modes involves recasting a
dynamical systemas a coupled systemof oscillators [8–
13]. Consider the general nonlinear autonomous sys-
tem of dimension n given by

ẋi = fi (x1, x2, ..., xn) . (39)

Differentiation of (39) once gives a coupled system of
second-order equations,

ẍi =
n∑

j=1

f j
∂ fi
∂x j

= − xi gi (x1, x2, ..., xi , ..., xn)

+ hi (x1, x2, ..., xi−1, xi+1, ..., xn) .

(40)

When a gi is positive, its respective i th equation
behaves like an oscillator. The following conjecture is
posed in [9]:
Competitive Modes Requirements: The conditions for
dynamical systems to be chaotic are given by:

(A) there exist at least two modes, labeled gi in the
system;

(B) at least two g’s are competitive or nearly competi-
tive, that is, for some i and j , gi ≈ g j > 0 at some
t ;

(C) at least one of the g’s is a function of evolution
variables such as t ; and

(D) at least one of the h’s is a function of system vari-
ables.

The requirements (A)–(D) essentially tell us that
a condition for chaos is that two or more equations
in (40) behave as oscillators (gi > 0), and that two
of these oscillators lock frequencies at one or more
times. In practice, we find that the frequencies agree
at a countably infinite collection of time values [8,13].
The frequencies should be functions of time (i.e., we
have nonlinear frequencies), and there should be at least
one forcing function which depends on a state variable.

In order to consider all possible chaotic dynam-
ics, one would have to compare each pair gi = g j ,
i �= j , i, j = 1, 2, 3, . . . , n. Accounting for symmetry,
this gives 2n−1 − 1 matchings to consider. For high-
dimensional dynamical systems, this number becomes
rather large. As an example, in the case of a ten-
dimensional system, there will be 511 possible match-
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ings to be checked in order to ensure onehas determined
the possible chaotic regimes. For such situations, the
approach is not particularly efficient, and a competi-
tive modes analysis is often considered for systems of
dimension three or four in the literature.

Let us consider dynamical systems (39) which can
be put into the form of a single equation for one state
variable. As such an equation will encode the dynam-
ics of the complete system, it is sufficient to consider
a competitive modes analysis for the resulting equa-
tion. Suppose that the resulting equation has maximal
derivative of order p > 0 (where p need not be equal
to n, as we have seen in earlier sections). Then, associ-
ating y(t) to this single state variable, we have

dp y

dt p
= F

(

y,
dy

dt
, . . . ,

dp−1y

dt p−1

)

. (41)

Since the competitive modes analysis relies on us
obtaining a system of oscillator equations, let take
y = y1 and write the equation (41) as the system

ẏ1 = y2 . . . , ẏp−1 = yp , ẏp = F(y1, . . . , yp) . (42)

Differentiation of (42) results in the system of second-
order equations given by

ÿ1 = y3 ,

...

ÿp−2 = yp ,

ÿp−1 = ẏp = F(y1, . . . , yp) ,

ÿp =
p∑

i=1

∂F

∂yi
ẏi =

p−1∑

i=1

∂F

∂yi
yi+1 + ∂F

∂yp
F(y1, . . . , yp) .

(43)

The right- hand side of the first p − 2 second-order
equations do not depend on the state variable for each
respective equation, so g1 = · · · = gp−2 = 0. Hence,
these equations are never oscillators. Meanwhile, we
can decompose the right-hand sides of the latter two
equations, so that

F(y1, . . . , yp) = −yp−1gp−1 + h p−1 (44)

and

Table 4 Number of comparisons needed when applying the
competitive modes analysis both with or without reduction of
dimension against the dimension of the original dynamical sys-
tem

System
dimension

Naive comparisons Comparisons
after reduction

3 3 1

4 7 1

5 15 1

10 511 1

20 ∼5.24 × 105 1

50 ∼5.63 × 1014 1

100 ∼6.34 × 1029 1

For systems of large dimension, the reduction of dimension
approach is really the only feasible way to apply the compet-
itive modes analysis

p−1∑

i=1

∂F

∂yi
yi+1 + ∂F

∂yp
F(y1, . . . , yp) = −ypgp + h p .

(45)

Note that there are now exactly two mode frequen-
cies, gp−1 and gp, and there is always an hi depend-
ing on state variables. In order to determine whether
the system (42) satisfies the competitiveness condi-
tions (A)–(D) (and therefore if the original system sat-
isfies these competitiveness conditions), it is sufficient
to check whether gp−1 = gp > 0 for some collection
of time values. This is only one condition to check,
rather than 2n−1 −1 conditions to check from the orig-
inal system. Therefore, while the conversion of the
system (39) to the equivalent system (42) may seem
somewhat roundabout, doing so greatly simplifies the
search for possible chaotic dynamics under the com-
petitive modes framework. See Table 4 for examples
of the number of comparisons needed when applying
the competitive modes analysis both before and after
reduction of dimension.

7 Discussion

The construction of Lyapunov functions for nonlinear
dynamical systems is often either simple, or quite chal-
lenging, with little room in between. Aside from choos-
ing some standard forms (such as the common bowl
shape centered about an equilibrium value), there is
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more an art to the selection of such function. However,
as we have demonstrated for the Rössler system, it is
possible to use differential elimination to obtain a con-
traction map in a single state variable, which can then
be used to obtain a stability result for all state vari-
ables. A similar approach was also employed in [1] to
studyMichaelis–Menten enzymatic reactions, and after
using a reduced equation, the proof of global asymp-
totic stability for a positive steady state was rather sim-
ple. Differential elimination, and reduction of dimen-
sion more generally, can therefore be useful in help-
ing one determine asymptotic properties of solutions to
nonlinear dynamical systems. On the other hand, it is
now known that there are autonomous chaotic systems
which lack any equilibrium [57]. The approach out-
lined here could still be used to construct maps which
demonstrate the boundedness of trajectories in time for
such systems, even if such trajectories do not approach
any fixed points.

While useful for obtaining contraction maps, reduc-
tion of dimension is also a promising tool for finding
and studying chaotic trajectories in nonlinear dynam-
ical systems. We were able to show that reduction
of dimension can be used to simplify calculations
involved in using undetermined coefficient methods
[3–5] by a factor of 1/n, where n is the dimension
of the dynamical system, meaning that the number of
equations needing to be solved will not increase with
the size of the system, i.e., the computational complex-
ity of the approach will not scale with the size of the
system but rather will remain fixed. This means that
one may approximate chaotic trajectories through such
approaches in systems of rather large dimension, with-
out the computational problem becoming unwieldy,
provided that the system can be reduced to a single
ODE governing only one state variable.

While chaos is often studied numerically, recently
analytical approaches have been employed to con-
struct trajectories approximating chaotic orbits. When
employing these methods, it can be beneficial to con-
sider a single equation rather than a system of equa-
tions, even if the single equation is more complicated.
This is true for series and perturbation approaches,
as the reduction of dimension requires one to track
fewer functions, which is particularly useful when
dealing with messy equations. Furthermore, analytical
approaches permitting the control of error, such as the
optimal homotopy analysis method, rely on assigning
an error control parameter to each state variable.Reduc-

tion of dimension can allow one to minimize error via
a single control parameter [2], rather than over multi-
ple parameters (as done in, for instance, [58]), which
is computationally less demanding.

The reduction of dimension can also be useful for
diagnostic tests for chaos. When applying the compet-
itive modes analysis, a type of diagnostic criteria for
finding chaotic in nonlinear dynamical systems, one
performs binary comparisons between the mode fre-
quencies of an oscillator corresponding to each equa-
tion. However, if one first applies reduction of dimen-
sion and reduces the system of a single ODE for
one state variable, we prove that only one compari-
son would needed. This is particularly beneficial when
studying large dimensional systems, since the number
of naive comparisons needed scales like 2n−1 in dimen-
sion n.

In the future, it would be interesting to consider
an algorithm that considered elimination not only ele-
ments ∂n (∂ = d

dt ) of a differential ring R[[∂]], but also
integral operators ∂−n (where ∂−n satisfies ∂−n∂n =
∂0 and hence is the inversion of the operator ∂n).
Indeed, in caseswhere the differential elimination algo-
rithm failed to give a reduction of the system to a single
ODE, we found by manual substitutions that one can
arrive at an integro-differential equation. While more
complicated, such integro-differential equations can
still cast light on the behavior of solutions and can prove
useful in obtaining Lyapunov functions. More gener-
ally than for dynamical systems, these inverse operators
∂−n play a role in the study of operators and integrable
hierarchies arising in nonlinear evolution PDEs [59–
62]. Therefore, the extension of the algorithm to the
ring of formal Laurent series in ∂ would be a fruitful
area for future work, not only for dynamical systems,
but also for integrable partial differential equations.

8 Conclusions

From our study, we find that reduction of dimen-
sion permits one certain computational benefits when
used in conjunction with analytic methods. Let dim(S)

denote the dimension of a nonlinear system S. When
used in conjunction with series or perturbation app-
roaches to approximate solution trajectories, reduc-
tion of dimension can reduce the number of unknown
series or perturbation expansions by a factor equal to
dim(S). Therefore, when such an approach is applica-
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ble, the number of series or perturbation expansions
needed becomes independent of the original dimen-
sion of the system. When using competitive modes
in order to determine likely candidates for chaos, the
results are even more promising, as instead of needing
2dim(S)−1 comparisons, one needs only to perform one
comparison if first one successfully employs reduction
of dimension. This is incredibly useful when dim(S)

is large. Additionally, there is an art to obtaining Lya-
punov functions or contraction maps for nonlinear sys-
tems. However, applying reduction of dimension first,
one only has to search for aLyapunov function for a sin-
gle equation. While this may still not be an easy task, it
is often more intuitive to consider a single scalar equa-
tion. Therefore,wefind that reduction of dimension can
improve various aspects of analytical methods, making
those methods more tractable or even more appealing
to apply. This is particularly important, as most results
in this area are obtained numerically, and hence, any
analytical verification of such numerical results is of
great utility.
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Appendix 1: List of chaotic systems

When testing our approach, we considered a variety of
specific chaotic systems. Results for these are listed in
Table 1. As the form and scaling of such equations can
vary in the literature, we list the specific form of these
equations used in our work.

Let x, y, z, w ∈ Cn(R) where n is the dimension of
the relevant dynamical system, and let a, b, c, d ∈ R

be parameters.
Lorenz system [29,30]:

ẋ = a(y − x) ,

ẏ = x(b − z) − y ,

ż = xy − cz .

(46)

Modified Chua’s circuit [31]:

ẋ = a

(

y − 1

7

(
2x3 − x

))

,

ẏ = x − y + z ,

ż = −by .

(47)

Chen–Lee system [32]:

ẋ = ax − yz ,

ẏ = by + xz ,

ż = cz + 1

3
xy .

(48)

Rabinovich–Fabrikant equations [33]:

ẋ = y
(
z − 1 + x2

)
+ ax ,

ẏ = x
(
3z + 1 − x2

)
+ ay ,

ż = −2z(b + xy) .

(49)

Rössler system [34]:

ẋ = −y − z ,

ẏ = x + ay ,

ż = b + z(x − c) .

(50)

Chen system [35]:

ẋ = a(y − x) ,

ẏ = (b − a)x − xz + by ,

ż = xy − cz .

(51)

Lü system [36]:

ẋ = a(y − x) ,

ẏ = by − xz ,

ż = xy − cz .

(52)

T system [37,38]:

ẋ = a(y − x) ,

ẏ = (b − a)x − axz ,

ż = xy − cz .

(53)
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4D Qi–Chen–Du–Chen–Yuan system [39]:

ẋ = a(y − x) + yzw ,

ẏ = b(x + y) − xzw ,

ż = −cz + xyw ,

ẇ = −dw + xyz .

(54)

Qi–Chen–Du–Chen–Yuan system [40]:

ẋ = a(y − x) + yz ,

ẏ = bx − y − xz ,

ż = xy − cz .

(55)

Generalized Lorenz canonical form [41,42]:

ẋ = ax − (x − y)z ,

ẏ = −by − (x − y)z ,

ż = −cz + (x + y)(x + dy) .

(56)

Two-parameter model for the blue-sky catastrophe [43,
44]:

ẋ =
(
2 + a − 10

(
x2 + y2

))
x + y2 + 2y + z2 ,

ẏ = −z3 − (1 + y)
(
y2 + 2y + z2

)
− 4x + ay ,

ż = (1 + y)z2 + x2 − b .

(57)

4D Lorenz–Stenflo system [45,46]:

ẋ = a(y − x) + bw ,

ẏ = cx − xz − y ,

ż = xy − dz ,

ẇ = −x − aw .

(58)

Genesio–Tesi system [47]:

ẋ = y ,

ẏ = z ,

ż = ax + by + cz + x2 .

(59)

Arneodo–Coullet–Tresser system [48]:

ẋ = y ,

ẏ = z ,

ż = ax − by − cz − x3 .

(60)

Appendix 2: List of hyperchaotic systems

When testing our approach, we considered a variety
of specific hyperchaotic systems. Results for these are
listed in Table 2. As the form and scaling of such equa-
tions can vary in the literature, we list the specific form
of these equations used in our work.

Let x, y, z, w ∈ C4(R) and let a, b, c, d, e, f ∈ R

be parameters.
4D Rössler flow [49]:

ẋ = −y − z ,

ẏ = x + 0.25y + w ,

ż = 3 + xz ,

ẇ = −0.5z + 0.05w .

(61)

Hyperchaotic Chen system [50]:

ẋ = a(y − x) ,

ẏ = −bx − xz + cy − w ,

ż = xy − dz ,

ẇ = x .

(62)

Hyperchaotic Lü system [51]:

ẋ = a(y − x) + w ,

ẏ = by − xz ,

ż = xy − cz ,

ẇ = xz + dw .

(63)

Modified hyperchaotic Lü system [52]:

ẋ = a(y − x + yz) ,

ẏ = by − xz + w ,

ż = xy − cz ,

ẇ = −dx .

(64)

Hyperchaotic Wang–Liu system [53]:

ẋ = a(y − x) ,

ẏ = bx − cxz + w ,

ż = −dz + ex2 ,

ẇ = − f x .

(65)
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Hyperchaotic Jia system [54]:

ẋ = a(y − x) + w ,

ẏ = bx − xz − y ,

ż = xy − cz ,

ẇ = dw − xz .

(66)

Hyperchaotic Qi–van Wyk–van Wyk–Chen system
[55]:

ẋ = a(y − x) + yz ,

ẏ = b(x + y) − xz ,

ż = −cz − dw + xy ,

ẇ = ez − f w + xy .

(67)
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