1,344 research outputs found
Single-mask thermal displacement sensor in MEMS
In this work we describe a one degree-of-freedom microelectromechanical thermal\ud
displacement sensor integrated with an actuated stage. The system was fabricated in the device layer of a silicon-on-insulator wafer using a single-mask process. The sensor is based on the temperature dependent electrical resistivity of silicon and the heat transfer by conduction through a thin layer of air. On a measurement range of 50 Ī¼m and using a measurement bandwidth of 30 Hz, the 1-sigma noise corresponds to 3.47 nm. The power consumption of the sensor is 209 mW, almost completely independent of stage position. The drift of the sensor over a measurement period of 32 hours was 32 nm
Smart Search in Newspaper Archives Using Topic Maps
The OmniPaper project has implemented three information retrieval prototypes in the area of electronic news publishing. One prototype uses SOAP as communication protocol between the central system and a number of distributed news archives. The second prototype uses an RDF metadata database, enabling direct metadata queries to the central system. Finally the Topic Map prototype uses query expansion and semantic linking for smart metadata search. The Topic Map prototype enhances thesearch experience by implementing a knowledge layer that combines the semantic content of a lexical database, consisting of concepts and keywords, with a metadata-set of newspaper articles. The linking between both is currently implemented at the level of keywords but will be developed at the level of concepts in the final prototype. The knowledge layer has been designed from a Topic Map point of view, although the XTM syntax has not been used to avoid performance issues. The consortiumās adopted view on information publishing and retrieval considers querying and navigation as two very related actions that can both be captured under the name āsearch for relevant informationā. Navigation forces the user to followpredefined paths whereas querying enables the user to look freely for a suitable starting point. The query and navigation functionality is provided through a web engine and is build on top of the information structure of the knowledge layer
Nitrogen source apportionment for the catchment, estuary and adjacent coastal waters of the Scheldt.
Using the systems approach framework (SAF), a coupled model suite was developed for simulating land-use decision making in response to nutrient abatement costs and water and nutrient fluxes in the hydrological network of the Scheldt River, and nutrient fluxes in the estuary and adjacent coastal sea. The purpose was to assess the efficiency of different long-term water quality improvement measures in current and future climate and societal settings, targeting nitrogen (N) load reduction. The spatial-dynamic model suite consists of two dynamically linked modules: PCRaster is used for the drainage network and is combined with ExtendSim modules for farming decision making and estuarine N dispersal. Model predictions of annual mean flow and total N concentrations compared well with data available for river and estuary (rĀ² ā„ 0.83). Source apportionment was carried out to societal sectors and administrative regions; both households and agriculture are the major sources of N, with the regions of Flanders and Wallonia contributing most. Load reductions by different measures implemented in the model were comparable (~75% remaining after 30 yr), but costs differed greatly. Increasing domestic sewage connectivity was more effective, at comparatively low cost (47% remaining). The two climate scenarios did not lead to major differences in load compared with the business-as-usual scenario (~88% remaining). Thus, this spatially explicit model of water flow and N fluxes in the Scheldt catchment can be used to compare different long-term policy options for N load reduction to river, estuary, and receiving sea in terms of their effectiveness, cost, and optimal location of implementation
A single-mask thermal displacement sensor in MEMS
This work presents a MEMS displacement sensor based on the conductive heat transfer of a resistively heated silicon structure towards an actuated stage parallel to the structure. This differential sensor can be easily incorporated into a silicon-on-insulator-based process, and fabricated within the same mask as electrostatic actuators and flexure-based stages. We discuss a lumped capacitance model to optimize the sensor sensitivity as a function of the doping concentration, the operating temperature, the heater length and width. We demonstrate various sensor designs. The typical sensor resolution is 2 nm within a bandwidth of 25 Hz at a full scale range of 110 Ī¼m
Prototyping the Semantics of a DSL using ASF+SDF: Link to Formal Verification of DSL Models
A formal definition of the semantics of a domain-specific language (DSL) is a
key prerequisite for the verification of the correctness of models specified
using such a DSL and of transformations applied to these models. For this
reason, we implemented a prototype of the semantics of a DSL for the
specification of systems consisting of concurrent, communicating objects. Using
this prototype, models specified in the DSL can be transformed to labeled
transition systems (LTS). This approach of transforming models to LTSs allows
us to apply existing tools for visualization and verification to models with
little or no further effort. The prototype is implemented using the ASF+SDF
Meta-Environment, an IDE for the algebraic specification language ASF+SDF,
which offers efficient execution of the transformation as well as the ability
to read models and produce LTSs without any additional pre or post processing.Comment: In Proceedings AMMSE 2011, arXiv:1106.596
Program transformations using temporal logic side conditions
This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program
Nucleoplasmic LAP2 alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 (LAP2) upon entry and exit from G0 is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2 are down-regulated in G0. Although RbS780 phosphoform and LAP2 are up-regulated upon reentry into G1 and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2 is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G1 phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2 or lamin A/C in HDFs leads to accumulation of Rb in speckles and G1 arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2 and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs
Measuring primordial gravitational waves from CMB B-modes in cosmologies with generalized expansion histories
We evaluate our capability to constrain the abundance of primordial tensor
perturbations in cosmologies with generalized expansion histories in the epoch
of cosmic acceleration. Forthcoming satellite and sub-orbital experiments
probing polarization in the CMB are expected to measure the B-mode power in CMB
polarization, coming from PGWs on the degree scale, as well as gravitational
lensing on arcmin scales; the latter is the main competitor for the measurement
of PGWs, and is directly affected by the underlying expansion history,
determined by the presence of a DE component. In particular, we consider early
DE possible scenarios, in which the expansion history is substantially modified
at the epoch in which the CMB lensing is most relevant. We show that the
introduction of a parametrized DE may induce a variation as large as 30% in the
ratio of the power of lensing and PGWs on the degree scale. We find that
adopting the nominal specifications of upcoming satellite measurements the
constraining power on PGWs is weakened by the inclusion of the extra degrees of
freedom, resulting in a reduction of about 10% of the upper limits on r in
fiducial models with no GWs, as well as a comparable increase in the error bars
in models with non-zero r. Moreover, we find that the inclusion of sub-orbital
CMB experiments, capable of mapping the B-mode power up to the angular scales
affected by lensing, can restore the forecasted performances with a
cosmological constant. Finally, we show how the combination of CMB data with
Type Ia SNe, BAO and Hubble constant allows to constrain simultaneously r and
the DE quantities in the parametrization we consider, consisting of present
abundance and first redshift derivative of the energy density. We compare this
study with results obtained using the forecasted lensing potential measurement
precision from CMB satellite observations, finding consistent results.Comment: 17 pages, 9 figures, accepted for publication by JCAP. Modified
version after the referee's comment
- ā¦