1,266 research outputs found
A self-interacting partially directed walk subject to a force
We consider a directed walk model of a homopolymer (in two dimensions) which
is self-interacting and can undergo a collapse transition, subject to an
applied tensile force. We review and interpret all the results already in the
literature concerning the case where this force is in the preferred direction
of the walk. We consider the force extension curves at different temperatures
as well as the critical-force temperature curve. We demonstrate that this model
can be analysed rigorously for all key quantities of interest even when there
may not be explicit expressions for these quantities available. We show which
of the techniques available can be extended to the full model, where the force
has components in the preferred direction and the direction perpendicular to
this. Whilst the solution of the generating function is available, its analysis
is far more complicated and not all the rigorous techniques are available.
However, many results can be extracted including the location of the critical
point which gives the general critical-force temperature curve. Lastly, we
generalise the model to a three-dimensional analogue and show that several key
properties can be analysed if the force is restricted to the plane of preferred
directions.Comment: 35 pages, 14 figure
The Impact of Implementing Hypofractionation Prescription Regimens and Modernizing Delivery Technique on Treatment Resources in Breast Radiotherapy
Purpose/Objective(s): To determine the change in treatment resources due to the implementation of hypofractionated prescription regimen.
Materials/Methods: All patients between January 1, 2012 and December 31, 2021 receiving curative intent breast radiotherapy at a tertiary cancer center were included. Plan and patient data were extracted from the patient database with the treatment planning system and direct database query. Treatment plan categorization was completed using data elements to include only curative intent. Treatment plans for seroma boost or supraclavicular irradiation were excluded to ensure this analysis did not double-count regional nodal irradiation contribution or confound boost with hypofractionation. Treatment delivery time is recorded in the database for each patient treatment delivered. Average patient treatment time per year was estimated by multiplying the average fractions each year by average time in the same year. The standard fractionation regimens (95% of patients) are 42.56 Gy in 16, 40 Gy in 16, 27 Gy in 5 (accelerated partial breast irradiation), and 26 Gy in 5 (FAST-Forward). In the analysis, implementation milestones are indicated for new prescription regimens and delivery technique changes including deep inspiration breath hold (DIBH) for left-sided patient treatments and daily verification imaging.
Results: A total of 6505 patients were included. Table 1 details the total number of patients per year, the average number of fractions treated per patient, and the average treatment time of each patient plan. The average total fractions per treatment decreased from 17.5 in 2012 to 10.9 in 2021. The average treatment delivery time increased from 12.9 minutes to 21.4 minutes.
Conclusion: In considering total treatment resources, the interplay between hypofractionation and modernization delivery techniques is complex. The impact of hypofractionation reduced the average number of fractions but total treatment resources are offset with the implementation of modern treatment delivery techniques. Hypofractionated prescription regimens reduce the time and travel commitment required of patients on an individual basis, contributing to person-centered care
Superheating fields of superconductors: Asymptotic analysis and numerical results
The superheated Meissner state in type-I superconductors is studied both
analytically and numerically within the framework of Ginzburg-Landau theory.
Using the method of matched asymptotic expansions we have developed a
systematic expansion for the solutions of the Ginzburg-Landau equations in the
limit of small , and have determined the maximum superheating field
for the existence of the metastable, superheated Meissner state as
an expansion in powers of . Our numerical solutions of these
equations agree quite well with the asymptotic solutions for . The
same asymptotic methods are also used to study the stability of the solutions,
as well as a modified version of the Ginzburg-Landau equations which
incorporates nonlocal electrodynamics. Finally, we compare our numerical
results for the superheating field for large- against recent asymptotic
results for large-, and again find a close agreement. Our results
demonstrate the efficacy of the method of matched asymptotic expansions for
dealing with problems in inhomogeneous superconductivity involving boundary
layers.Comment: 14 pages, 8 uuencoded figures, Revtex 3.
Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal
The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration
Oral health indices predict individualised recall interval
Objectives: The individualised recall interval (IRI) is part of the oral health examination. This observational, register-based study aimed to explore how oral health indices DMFT (decayed, missing, filled teeth), DT (decayed teeth), CPI (Community Periodontal Index, maximum value of individual was used) and number of teeth are associated with IRI for adults. Methods: Oral health examination includes an assessment of all oral tissues, diagnosis, a treatment plan and assessment and a determination of the interval before the next assessment. It is called the IRI. This cross-sectional study population included 42,533 adults (age range 18-89 years), who had visited for an oral health examination during 2009, provided by the Helsinki City Social Services and Health Care. The recall interval was categorised into an ordinal scale (0-12, 13-24, 25-36 and 37-60 months) and was modelled using a proportional odds model. ORs less than one indicated a shorter recall interval. Results: Recall interval categories in the study population were 0-12 months (n = 4,569; 11%), 13-24 months (n = 23,732; 56%), 25-36 months (n = 12,049; 28%), and 37-60 months (n = 2,183; 5%). The results of statistical models clearly showed an association between the length of recall intervals and oral health indices. In all models, higher values of DMFT, DT and CPI indicated a shorter recall interval. The number of teeth were not so relevant. The association was not influenced when different combinations of other predictors (age, gender, socioeconomic status, chronic diseases) were included in the model. The severity of periodontitis predicted a short recall interval, for example, in the Model 1, CPI maximum value 4 was OR = 0.35 (95% confidence interval 0.31-0.40). Conclusions: The oral health indices showed a clear association with the length of the IRI. Poor oral health reduced IRI. The indices provide information about the amount of oral health prevention required and are useful to health organisations.Peer reviewe
Local Causal States and Discrete Coherent Structures
Coherent structures form spontaneously in nonlinear spatiotemporal systems
and are found at all spatial scales in natural phenomena from laboratory
hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary
climate dynamics. Phenomenologically, they appear as key components that
organize the macroscopic behaviors in such systems. Despite a century of
effort, they have eluded rigorous analysis and empirical prediction, with
progress being made only recently. As a step in this, we present a formal
theory of coherent structures in fully-discrete dynamical field theories. It
builds on the notion of structure introduced by computational mechanics,
generalizing it to a local spatiotemporal setting. The analysis' main tool
employs the \localstates, which are used to uncover a system's hidden
spatiotemporal symmetries and which identify coherent structures as
spatially-localized deviations from those symmetries. The approach is
behavior-driven in the sense that it does not rely on directly analyzing
spatiotemporal equations of motion, rather it considers only the spatiotemporal
fields a system generates. As such, it offers an unsupervised approach to
discover and describe coherent structures. We illustrate the approach by
analyzing coherent structures generated by elementary cellular automata,
comparing the results with an earlier, dynamic-invariant-set approach that
decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht
Private trade and monopoly structures : the East India Companies and the commodity trade to Europe in the eighteenth century
Our research is about the trade in material goods from Asia to Europe over this period, and its impact on Europe’s consumer and industrial cultures. It entails a comparative study of Europe’s East India Companies and the private trade from Asia over the period. The commodities trade was heavily dependent on private trade. The historiography to date has left a blind spot in this area, concentrating instead on corruption and malfeasance. Taking a global history approach we investigate the trade in specific consumer goods in many qualities and varieties that linked merchant communities and stimulated information flows. We set out how private trade functioned alongside and in connection with the various European East India companies; we investigate how this changed over time, how it drew on the Company infrastructure, and how it took the risks and developed new and niche markets for specific Asian commodities that the Companies could not sustain
The Evolution of Travelling Waves in a KPP Reaction-Diffusion Model with Cut-off Reaction Rate. I. Permanent Form Travelling Waves
We consider Kolmogorov--Petrovskii--Piscounov (KPP) type models in the
presence of a discontinuous cut-off in reaction rate at concentration .
In Part I we examine permanent form travelling wave solutions (a companion
paper, Part II, is devoted to their evolution in the large time limit). For
each fixed cut-off value , we prove the existence of a unique
permanent form travelling wave with a continuous and monotone decreasing
propagation speed . We extend previous asymptotic results in the
limit of small and present new asymptotic results in the limit of large
which are respectively obtained via the systematic use of matched and
regular asymptotic expansions. The asymptotic results are confirmed against
numerical results obtained for the particular case of a cut-off Fisher reaction
function
Impaired Phagocytosis in Localized Aggressive Periodontitis: Rescue by Resolvin E1
Resolution of inflammation is an active temporally orchestrated process demonstrated by the biosynthesis of novel proresolving mediators. Dysregulation of resolution pathways may underlie prevalent human inflammatory diseases such as cardiovascular diseases and periodontitis. Localized Aggressive Periodontitis (LAP) is an early onset, rapidly progressing form of inflammatory periodontal disease. Here, we report increased surface P-selectin on circulating LAP platelets, and elevated integrin (CD18) surface expression on neutrophils and monocytes compared to healthy, asymptomatic controls. Significantly more platelet-neutrophil and platelet-monocyte aggregates were identified in circulating whole blood of LAP patients compared with asymptomatic controls. LAP whole blood generates increased pro-inflammatory LTB4 with addition of divalent cation ionophore A23187 (5 µM) and significantly less, 15-HETE, 12-HETE, 14-HDHA, and lipoxin A4. Macrophages from LAP subjects exhibit reduced phagocytosis. The pro-resolving lipid mediator, Resolvin E1 (0.1–100 nM), rescues the impaired phagocytic activity in LAP macrophages. These abnormalities suggest compromised resolution pathways, which may contribute to persistent inflammation resulting in establishment of a chronic inflammatory lesion and periodontal disease progression
Self-binormal solutions of the Localized Induction Approximation: Singularity formation
We investigate the formation of singularities in a self-similar form of
regular solutions of the Localized Induction Approximation (also referred as to
the binormal flow). This equation appears as an approximation model for the
self-induced motion of a vortex filament in an inviscid incompressible fluid.
The solutions behave as 3d-logarithmic spirals at infinity.
The proofs of the results are strongly based on the existing connection
between the binormal flow and certain Schr\"odinger equations.Comment: 60 pages, 8 figure
- …