97 research outputs found

    Molecular effects of isoflavone supplementation : human intervention studies and quantitative models for risk assessment

    Get PDF
    Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology. This was explored for isoflavones in a case study. For isoflavones potential beneficial health effects have been suggested, but discussions on their safety are ongoing as well. Aims and methods: Effects of isoflavone supplements on gene expression were studied in white blood cells (PBMCs) and adipose tissue, among postmenopausal women in two human intervention studies. To advance risk assessment, the dose response relation between intake and blood levels was studied with a log-linear regression model as well as the comparability of the human gene expression profiles with results from a rat experiment using multivariate analysis. Results: In both PBMCs and adipose tissue, changes in gene expression profiles pointed at effects of isoflavones on energy metabolism, inflammation and cell cycle; these effects were modified by supplement composition and equol-producing phenotype. Hypothesized estrogen-responsive effects were not observed. For the intake range of 0-100mg/day, the plasma concentrations of daidzein, equol, genistein and total isoflavones were quantified, interindividual variation. Expression of estrogen-responsive gene profiles and other biological pathways could be quantitatively compared between PBMCs and adipose tissue, as well as between humans and rats. en nog iets Conclusion: Effects of isoflavone supplementation on gene expression in PBMCs and adipose tissue of postmenopausal women suggest mainly beneficial effects of a dose of ~100mg/day. The absence of a clear estrogen-like response suggested a limited role of the estrogen receptor in isoflavone induced gene expression in postmenopausal women. The trials and quantitative models provide important tools[AG1] that enable further exploration of intertissue and interspecies comparability and advancing the use of transcriptomics in assessing risks and benefits. Modelling data from human and animal studies provide important possibilities for further exploration of intertissue and interspecies similarities and for the use of transcriptomics in improving risk assessment. </p

    Single-Step Extraction Coupled with Targeted HILIC-MS/MS Approach for Comprehensive Analysis of Human Plasma Lipidome and Polar Metabolome.

    Get PDF
    Expanding metabolome coverage to include complex lipids and polar metabolites is essential in the generation of well-founded hypotheses in biological assays. Traditionally, lipid extraction is performed by liquid-liquid extraction using either methyl-tert-butyl ether (MTBE) or chloroform, and polar metabolite extraction using methanol. Here, we evaluated the performance of single-step sample preparation methods for simultaneous extraction of the complex lipidome and polar metabolome from human plasma. The method performance was evaluated using high-coverage Hydrophilic Interaction Liquid Chromatography-ESI coupled to tandem mass spectrometry (HILIC-ESI-MS/MS) methodology targeting a panel of 1159 lipids and 374 polar metabolites. The criteria used for method evaluation comprised protein precipitation efficiency, and relative MS signal abundance and repeatability of detectable lipid and polar metabolites in human plasma. Among the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures were selected as the best compromises for the simultaneous extraction of complex lipids and polar metabolites, allowing for the detection of 584 lipid species and 116 polar metabolites. The extraction with IPA showed the greatest reproducibility with the highest number of lipid species detected with the coefficient of variation (CV) &lt; 30%. Besides this difference, both IPA and BUME allowed for the high-throughput extraction and reproducible measurement of a large panel of complex lipids and polar metabolites, thus warranting their application in large-scale human population studies

    Sex-specific alterations in NAD+ metabolism in 3xTg Alzheimer's disease mouse brain assessed by quantitative targeted LC-MS.

    Get PDF
    Levels of nicotinamide adenine dinucleotide (NAD+) are known to decline with age and have been associated with impaired mitochondrial function leading to neurodegeneration, a key facet of Alzheimer's disease (AD). NAD+synthesis is sustained via tryptophan-kynurenine (Trp-Kyn) pathway as de novo synthesis route, and salvage pathways dependent on the availability of nicotinic acid and nicotinamide. While being currently investigated as a multifactorial disease with a strong metabolic component, AD remains without curative treatment and important sex differences were reported in relation to disease onset and progression. The aim of this study was to reveal the potential deregulation of NAD+metabolism in AD with the direct analysis of NAD+precursors in the mouse brain tissue (wild type (WT) versus triple transgenic (3xTg) AD), using a sex-balanced design. To this end, we developed a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which allowed for the measurement of the full spectrum of NAD+precursors and intermediates in all three pathways. In brain tissue of mice with developed AD symptoms, a decrease in kynurenine (Kyn) versus increase in kynurenic acid (KA) levels were observed in both sexes with a significantly higher increment of KA in males. These alterations in Trp-Kyn pathway might be a consequence of neuroinflammation and a compensatory production of neuroprotective kynurenic acid. In the NAD+ salvage pathway, significantly lower levels of nicotinamide mononucleotide (NMN) were measured in the AD brain of males and females. Depletion of NMN implies the deregulation of salvage pathway critical for maintaining optimal NAD+ levels and mitochondrial and neuronal function

    A risk assessment-driven quantitative comparison of gene expression profiles in PBMCs and white adipose tissue of humans and rats after isoflavone supplementation

    Get PDF
    Quantitative insight into species differences in risk assessment is expected to reduce uncertainty and variability related to extrapolation from animals to humans. This paper explores quantification and comparison of gene expression data between tissues and species from intervention studies with isoflavones. Gene expression data from peripheral blood mononuclear cells (PBMCs) and white adipose tissue (WAT) after 8wk isoflavone interventions in postmenopausal women and ovariectomized F344 rats were used. A multivariate model was applied to quantify gene expression effects, which showed 3–5-fold larger effect sizes in rats compared to humans. For estrogen responsive genes, a 5-fold greater effect size was found in rats than in humans. For these genes, intertissue correlations (r = 0.23 in humans, r = 0.22 in rats) and interspecies correlation in WAT (r = 0.31) were statistically significant. Effect sizes, intertissue and interspecies correlations for some groups of genes within energy metabolism, inflammation and cell cycle processes were significant, but weak. Quantification of gene expression data reveals differences between rats and women in effect magnitude after isoflavone supplementation. For risk assessment, quantification of gene expression data and subsequent calculation of intertissue and interspecies correlations within biological pathways will further strengthen knowledge on comparability between tissues and species

    Social health is associated with tract-specific brain white matter microstructure in community-dwelling older adults

    Get PDF
    Background Poor social health has been linked to a risk of neuropsychiatric disorders. Neuroimaging studies have shown associations between social health and global white matter microstructural integrity. We aimed to identify which white matter tracts are involved in these associations. Methods Social health markers (loneliness, perceived social support, and partnership status) and white matter microstructural integrity of 15 white matter tracts (identified with probabilistic tractography after diffusion magnetic resonance imaging) were collected for 3352 participants (mean age 58.4 years, 54.9% female) from 2002 to 2008 in the Rotterdam Study. Cross-sectional associations were studied using multivariable linear regression. Results Loneliness was associated with higher mean diffusivity (MD) in the superior thalamic radiation and the parahippocampal part of the cingulum (standardized mean difference for both tracts: 0.21, 95% CI, 0.09 to 0.34). Better perceived social support was associated with lower MD in the forceps minor (standardized mean difference per point increase in social support: −0.06, 95% CI, −0.09 to −0.03), inferior fronto-occipital fasciculus, and uncinate fasciculus. In male participants, better perceived social support was associated with lower MD in the forceps minor, and not having a partner was associated with lower fractional anisotropy in the forceps minor. Loneliness was associated with higher MD in the superior thalamic radiation in female participants only. Conclusions Social health was associated with tract-specific white matter microstructure. Loneliness was associated with lower integrity of limbic and sensorimotor tracts, whereas better perceived social support was associated with higher integrity of association and commissural tracts, indicating that social health domains involve distinct neural pathways of the brain
    corecore