120 research outputs found

    Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors

    Get PDF
    The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors

    Androgen-independent expression of adrenomedullin and peptidylglycine alpha-amidating monooxygenase in human prostatic carcinoma

    Get PDF
    Most of the locally advanced and metastatic prostate carcinomas (PCs) treated with antiandrogenic therapy eventually become refractory to this treatment. Locally produced factors may control prostate tumor biology after androgen withdrawal. Adrenomedullin (AM) is expressed in the prostate and could control cell growth in androgen-independent conditions. AM needs to be amidated by the enzyme peptidylglycine alpha-amidating monooxygenase (PAM) to become fully active. The objective of the present study was to analyze whether the expression of preproadrenomedullin (preproAM) and PAM in PC is regulated by androgens. For this purpose, human in vitro and in vivo PC models were grown in the presence or absence of androgens, and the expression of AM and PAM was examined by immunohistochemistry, Western blotting, RT-PCR, and Northern blotting. Furthermore, immunohistochemical analysis of AM in clinical specimens was performed to test if its expression is related to Gleason score and antiandrogenic therapy. In PC cell lines and xenografts, mRNA and protein AM levels were similar in the presence or absence of androgens. PAM expression seemed to be induced by androgen-withdrawal. Our results in clinical samples showed no relationship between AM expression and Gleason score or antiandrogenic treatment. In conclusion, our results demonstrate that preproAM and PAM expression in the human prostate is androgen-independent. In addition, we also report for the first time the expression of a novel PAM transcript in PC, which has not been previously described in other tissues

    Peptidylglycine alpha-amidating monooxygenase- and proadrenomedullin-derived peptide-associated neuroendocrine differentiation are induced by androgen deprivation in the neoplastic prostate

    Get PDF
    Most PCs show NE differentiation. Several studies have tried to correlate NE expression with disease status, but the reported findings have been contradictory. Prostatic NE cells synthesize peptides with a wide spectrum of potential functions. Some of these active peptides, such as PAMP, are amidated. PAM is the only carboxy-terminal peptide-amidating enzyme identified. We studied expression of PAMP and PAM in normal prostate and prostatic tumors (clinical specimens and human xenograft models) with or without prior androgen-deprivation therapy and found a wide distribution of both molecules in NE subpopulations of all kinds. Although the correlation of either marker to tumor grade, clinical progression or disease prognosis did not reach statistical significance, PAMP- or PAM-immunoreactive cells were induced after androgen-blockade therapy. In the PC-310 and PC-295 androgen-dependent models, PAMP or PAM NE differentiation was induced after castration in different ways, being higher in PC-310, which might explain its long-term survival after androgen deprivation. We show induction of expression of 2 new NE markers in clinical specimens and xenografted PC after endocrine therapy

    Transposable Elements Are Co-opted as Oncogenic Regulatory Elements by Lineage-Specific Transcription Factors in Prostate Cancer

    Get PDF
    Transposable elements hold regulatory functions that impact cell fate determination by controlling gene expression. However, little is known about the transcriptional machinery engaged at transposable elements in pluripotent and mature versus oncogenic cell states. Through positional analysis over repetitive DNA sequences of H3K27ac chromatin immunoprecipitation sequencing data from 32 normal cell states, we report pluripotent/stem and mature cell state–specific “regulatory transposable elements.” Pluripotent/stem elements are binding sites for pluripotency factors (e.g., NANOG, SOX2, OCT4). Mature cell elements are docking sites for lineage-specific transcription factors, including AR and FOXA1 in prostate epithelium. Expanding the analysis to prostate tumors, we identify a subset of regulatory transposable elements shared with pluripotent/stem cells, including Tigger3a. Using chromatin editing technology, we show how such elements promote prostate cancer growth by regulating AR transcriptional activity. Collectively, our results suggest that oncogenesis arises from lineage-specific transcription factors hijacking pluripotent/stem cell regulatory transposable elements.</p

    Transposable Elements Are Co-opted as Oncogenic Regulatory Elements by Lineage-Specific Transcription Factors in Prostate Cancer

    Get PDF
    Transposable elements hold regulatory functions that impact cell fate determination by controlling gene expression. However, little is known about the transcriptional machinery engaged at transposable elements in pluripotent and mature versus oncogenic cell states. Through positional analysis over repetitive DNA sequences of H3K27ac chromatin immunoprecipitation sequencing data from 32 normal cell states, we report pluripotent/stem and mature cell state–specific “regulatory transposable elements.” Pluripotent/stem elements are binding sites for pluripotency factors (e.g., NANOG, SOX2, OCT4). Mature cell elements are docking sites for lineage-specific transcription factors, including AR and FOXA1 in prostate epithelium. Expanding the analysis to prostate tumors, we identify a subset of regulatory transposable elements shared with pluripotent/stem cells, including Tigger3a. Using chromatin editing technology, we show how such elements promote prostate cancer growth by regulating AR transcriptional activity. Collectively, our results suggest that oncogenesis arises from lineage-specific transcription factors hijacking pluripotent/stem cell regulatory transposable elements.</p

    Gleason Grade 4 Prostate Adenocarcinoma Patterns: An Inter-observer Agreement Study among Genitourinary Pathologists

    Get PDF
    Aims To assess the interobserver reproducibility of individual Gleason grade 4 growth patterns. Methods and results Twenty-three genitourinary pathologists participated in the evaluation of 60 selected high-magnification photographs. The selection included 10 cases of Gleason grade 3, 40 of Gleason grade 4 (10 per growth pattern), and 10 of Gleason grade 5. Participants were asked to select a single predominant Gleason grade per case (3, 4, or 5), and to indicate the predominant Gleason grade 4 growth pattern, if present. ‘Consensus’ was defined as at least 80% agreement, and ‘favoured’ as 60–80% agreement. Consensus on Gleason grading was reached in 47 of 60 (78%) cases, 35 of which were assigned to grade 4. In the 13 non-consensus cases, ill-formed (6/13, 46%) and fused (7/13, 54%) patterns were involved in the disagreement. Among the 20 cases where at least one pathologist assigned the ill-formed growth pattern, none (0%, 0/20) reached consensus. Consensus for fused, cribriform and glomeruloid glands was reached in 2%, 23% and 38% of cases, respectively. In nine of 35 (26%) consensus Gleason grade 4 cases, participants disagreed on the growth pattern. Six of these were characterized by large epithelial proliferations with delicate intervening fibrovascular cores, which were alternatively given the designation fused or cribriform growth pattern (‘complex fused’). Conclusions Consensus on Gleason grade 4 growth pattern was predominantly reached on cribriform and glomeruloid patterns, but rarely on ill-formed and fused glands. The complex fused glands seem to constitute a borderline pattern of unknown prognostic significance on which a consensus could not be reached

    Systematic Review of Active Surveillance for Clinically Localised Prostate Cancer to Develop Recommendations Regarding Inclusion of Intermediate-risk Disease, Biopsy Characteristics at Inclusion and Monitoring, and Surveillance Repeat Biopsy Strategy

    Get PDF
    none38siContext: There is uncertainty regarding the most appropriate criteria for recruitment, monitoring, and reclassification in active surveillance (AS) protocols for localised prostate cancer (PCa). Objective: To perform a qualitative systematic review (SR) to issue recommendations regarding inclusion of intermediate-risk disease, biopsy characteristics at inclusion and monitoring, and repeat biopsy strategy. Evidence acquisition: A protocol-driven, Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA)-adhering SR incorporating AS protocols published from January 1990 to October 2020 was performed. The main outcomes were criteria for inclusion of intermediate-risk disease, monitoring, reclassification, and repeat biopsy strategies (per protocol and/or triggered). Clinical effectiveness data were not assessed. Evidence synthesis: Of the 17 011 articles identified, 333 studies incorporating 375 AS protocols, recruiting 264 852 patients, were included. Only a minority of protocols included the use of magnetic resonance imaging (MRI) for recruitment (n = 17), follow-up (n = 47), and reclassification (n = 26). More than 50% of protocols included patients with intermediate or high-risk disease, whilst 44.1% of protocols excluded low-risk patients with more than three positive cores, and 39% of protocols excluded patients with core involvement (CI) >50% per core. Of the protocols, ≥80% mandated a confirmatory transrectal ultrasound biopsy; 72% (n = 189) of protocols mandated per-protocol repeat biopsies, with 20% performing this annually and 25% every 2 yr. Only 27 protocols (10.3%) mandated triggered biopsies, with 74% of these protocols defining progression or changes on MRI as triggers for repeat biopsy. Conclusions: For AS protocols in which the use of MRI is not mandatory or absent, we recommend the following: (1) AS can be considered in patients with low-volume International Society of Urological Pathology (ISUP) grade 2 (three or fewer positive cores and cancer involvement ≤50% CI per core) or another single element of intermediate-risk disease, and patients with ISUP 3 should be excluded; (2) per-protocol confirmatory prostate biopsies should be performed within 2 yr, and per-protocol surveillance repeat biopsies should be performed at least once every 3 yr for the first 10 yr; and (3) for patients with low-volume, low-risk disease at recruitment, if repeat systematic biopsies reveal more than three positive cores or maximum CI >50% per core, they should be monitored closely for evidence of adverse features (eg, upgrading); patients with ISUP 2 disease with increased core positivity and/or CI to similar thresholds should be reclassified. Patient summary: We examined the literature to issue new recommendations on active surveillance (AS) for managing localised prostate cancer. The recommendations include setting criteria for including men with more aggressive disease (intermediate-risk disease), setting thresholds for close monitoring of men with low-risk but more extensive disease, and determining when to perform repeat biopsies (within 2 yr and 3 yearly thereafter).noneWillemse, Peter-Paul M; Davis, Niall F; Grivas, Nikolaos; Zattoni, Fabio; Lardas, Michael; Briers, Erik; Cumberbatch, Marcus G; De Santis, Maria; Dell'Oglio, Paolo; Donaldson, James F; Fossati, Nicola; Gandaglia, Giorgio; Gillessen, Silke; Grummet, Jeremy P; Henry, Ann M; Liew, Matthew; MacLennan, Steven; Mason, Malcolm D; Moris, Lisa; Plass, Karin; O'Hanlon, Shane; Omar, Muhammad Imran; Oprea-Lager, Daniela E; Pang, Karl H; Paterson, Catherine C; Ploussard, Guillaume; Rouvière, Olivier; Schoots, Ivo G; Tilki, Derya; van den Bergh, Roderick C N; Van den Broeck, Thomas; van der Kwast, Theodorus H; van der Poel, Henk G; Wiegel, Thomas; Yuan, Cathy Yuhong; Cornford, Philip; Mottet, Nicolas; Lam, Thomas B LWillemse, Peter-Paul M; Davis, Niall F; Grivas, Nikolaos; Zattoni, Fabio; Lardas, Michael; Briers, Erik; Cumberbatch, Marcus G; De Santis, Maria; Dell'Oglio, Paolo; Donaldson, James F; Fossati, Nicola; Gandaglia, Giorgio; Gillessen, Silke; Grummet, Jeremy P; Henry, Ann M; Liew, Matthew; Maclennan, Steven; Mason, Malcolm D; Moris, Lisa; Plass, Karin; O'Hanlon, Shane; Omar, Muhammad Imran; Oprea-Lager, Daniela E; Pang, Karl H; Paterson, Catherine C; Ploussard, Guillaume; Rouvière, Olivier; Schoots, Ivo G; Tilki, Derya; van den Bergh, Roderick C N; Van den Broeck, Thomas; van der Kwast, Theodorus H; van der Poel, Henk G; Wiegel, Thomas; Yuan, Cathy Yuhong; Cornford, Philip; Mottet, Nicolas; Lam, Thomas B
    corecore