898 research outputs found

    Illuminating Choices for Library Prep: A Comparison of Library Preparation Methods for Whole Genome Sequencing of Cryptococcus neoformans Using Illumina HiSeq.

    Get PDF
    The industry of next-generation sequencing is constantly evolving, with novel library preparation methods and new sequencing machines being released by the major sequencing technology companies annually. The Illumina TruSeq v2 library preparation method was the most widely used kit and the market leader; however, it has now been discontinued, and in 2013 was replaced by the TruSeq Nano and TruSeq PCR-free methods, leaving a gap in knowledge regarding which is the most appropriate library preparation method to use. Here, we used isolates from the pathogenic fungi Cryptococcus neoformans var. grubii and sequenced them using the existing TruSeq DNA v2 kit (Illumina), along with two new kits: the TruSeq Nano DNA kit (Illumina) and the NEBNext Ultra DNA kit (New England Biolabs) to provide a comparison. Compared to the original TruSeq DNA v2 kit, both newer kits gave equivalent or better sequencing data, with increased coverage. When comparing the two newer kits, we found little difference in cost and workflow, with the NEBNext Ultra both slightly cheaper and faster than the TruSeq Nano. However, the quality of data generated using the TruSeq Nano DNA kit was superior due to higher coverage at regions of low GC content, and more SNPs identified. Researchers should therefore evaluate their resources and the type of application (and hence data quality) being considered when ultimately deciding on which library prep method to use

    Comparison of Leishmania typing results obtained from 16 European clinical laboratories in 2014

    Get PDF
    Leishmaniasis is a vector-borne disease which is endemic in 98 countries worldwide [1]. It is caused by protozoan parasites of the genus Leishmania, which are transmitted by female sand flies of the genera Lutzomyia and Phlebotomus. Many infected individuals never develop symptoms, but those who do can exhibit various disease manifestations [2]. Visceral leishmaniasis (VL) or kala-azar is the severe form, whereby parasites infect internal organs and the bone marrow, a lethal condition if left untreated. Other disease types are restricted to the skin (cutaneous leishmaniasis, CL) or the mucosae of the nose and mouth (mucosal leishmaniasis, ML). Finally, a particular cutaneous disease sometimes develops in cured VL patients: post kala-azar dermal leishmaniasis (PKDL). Typically, VL is caused by two species: Leishmania donovani and Leishmania infantum. The latter can also cause CL, as can all other pathogenic species. Some particular species (e.g. L. braziliensis and L. aethiopica) can lead to overt ML. As many as 20 different Leishmania species are able to infect humans, and globally there are over 1 million new disease cases per annum [1,3]. Leishmaniasis is endemic in southern Europe, and in other European countries cases are diagnosed in travellers who have visited affected areas both within the continent and beyond. Although treatment in practice is often guided only by clinical presentation and patient history, in some cases determination of the aetiological subgenus, species complex or species is recommended for providing optimal treatment [2,4,5]. For example, a patient returning from South America with CL might be infected with Leishmania braziliensis, which necessitates systemic drug therapy and counselling about the risk of developing mucosal leishmaniasis in the future. The same patient could also be infected with Leishmania mexicana, which is managed by less intensive treatment and which is not associated with mucosal disease [6]. Determining the infecting species and its probable source permits selection of the correct drug, route of administration (intralesional, oral systemic, or parenteral) and duration [7]. Unfortunately, for CL it is impossible to predict the species responsible for an ulcerating lesion clinically, and the morphology of amastigotes does not differ between species. When the geographical origin of infection is known, for instance when a patient in an endemic region is treated at a local hospital, the species can be guessed often from the known local epidemiology, as species distribution follows a geographical pattern [8]. However, especially in infectious disease clinics that treat patients who have stayed in various endemic countries, the geographic origin of infections may be unknown. For instance, people residing in Europe who have travelled outside Europe may come from, or have also visited, Leishmania-endemic areas within Europe, especially the Mediterranean basin. Even when the location of infection is known, several species can co- circulate in a given endemic area, in which case the species can only be determined by laboratory tests. Culture and subsequent isoenzyme analysis is time consuming and available in very few specialised centres, so it is impractical as a front-line diagnostic test in clinical laboratories. Hence, well-performed reliable molecular methods are necessary for species identification. Several Leishmania typing methods have been published (reviewed in [9]), and as a result each laboratory uses its own preferred assay. The most popular assays nowadays are those that can be applied directly to clinical samples, thereby circumventing the need for parasite isolation and culture. However, few tests have been standardised, and no commercial kits are currently available. As a result, clinical and epidemiological studies make use of various techniques, and in patient management other methods are often deployed. In this study we compare the typing performance in 16 clinical laboratories across Europe, which use a variety of methods for species discrimination

    Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer

    Get PDF
    We studied the presence of lymphangiogenesis in lymph node (LN) metastases of breast cancer. Lymph vessels were present in 52 of 61 (85.2%) metastatically involved LNs vs 26 of 104 (25.0%) uninvolved LNs (P<0.001). Furthermore, median intra- and perinodal lymphatic endothelial cell proliferation fractions were higher in metastatically involved LNs (P<0.001). This is the first report demonstrating lymphangiogenesis in LN metastases of cancer in general and breast cancer in particular

    Graves Hyperthyroidism After Stopping Immunosuppressive Therapy in Type 1 Diabetic Islet Cell Recipients With Pretransplant TPO Autoantibodies

    Get PDF
    OBJECTIVE — After an initially successful islet cell transplantation, a number of patients return to C-peptide negativity, and therefore immunosuppressive therapy is discontinued. Some are then found to have developed Graves disease. We examined the risk of Graves disease after immunosuppression. RESEARCHDESIGNANDMETHODS — Immunosuppressive therapy was stopped in 13 type 1 diabetic islet cell recipients who had received one course of antithymocyte globulin and maintenance doses of mycophenolate mofetil and a calcineurin inhibitor. None had a history of thyroid disease. RESULTS — In four patients, clinical Graves hyperthyroidism was observed within 21 months after discontinuation and 30–71 months after the start of immunosuppressive therapy. All four patients exhibited a pretransplant positivity for thyroid peroxidase (TPO) autoantibod-ies, while the nine others were TPO negative pre- and posttransplantation. CONCLUSIONS — Type 1 diabetic recipients of islet cell grafts with pretransplant TPO autoantibody positivity exhibit a high risk for developing Graves hyperthyroidism after immu-nosuppressive therapy is discontinued for a failing graft. Diabetes Care 32:1817–1819, 2009 I slet cell transplantation has beenshown to reproducibly achieve meta-bolic correction in nonuremic type 1 diabetic patients (1,2). However, in the years following transplantation, several of them return to C-peptide negativity and thus to a discontinuation of their immu-nosuppressive therapy (2)

    Worldwide Relationships in the Fern Genus Pteridium (Bracken) Based on Nuclear Genome Markers

    Get PDF
    PREMISE: Spore-bearing plants are capable of dispersing very long distances. However, it is not known if gene flow can prevent genetic divergence in widely distributed taxa. Here we address this issue, and examine systematic relationships at a global geographic scale for the fern genus Pteridium. METHODS: We sampled plants from 100 localities worldwide, and generated nucleotide data from four nuclear genes and two plastid regions. We also examined 2801 single nucleotide polymorphisms detected by a restriction site-associated DNA approach. RESULTS: We found evidence for two distinct diploid species and two allotetraploids between them. The “northern” species (Pteridium aquilinum) has distinct groups at the continental scale (Europe, Asia, Africa, and North America). The northern European subspecies pinetorum appears to involve admixture among all of these. A sample from the Hawaiian Islands contained elements of both North American and Asian P. aquilinum. The “southern” species, P. esculentum, shows little genetic differentiation between South American and Australian samples. Components of African genotypes are detected on all continents. CONCLUSIONS: We find evidence of distinct continental-scale genetic differentiation in Pteridium. However, on top of this is a clear signal of recent hybridization. Thus, spore-bearing plants are clearly capable of extensive long-distance gene flow; yet appear to have differentiated genetically at the continental scale. Either gene flow in the past was at a reduced level, or vicariance is possible even in the face of long-distance gene flow

    NF-ÎșB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation

    Get PDF
    Activation of NF-ÎșB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-ÎșB and ER. In this study, we examined the activation of NF-ÎșB in IBC and non-IBC with respect to ER and EGFR and/or ErbB2 expression and MAPK hyperactivation. A qRT–PCR based ER signature was evaluated in tumours with and without transcriptionally active NF-ÎșB, as well as correlated with the expression of eight NF-ÎșB target genes. Using a combined ER/NF-ÎșB signature, hierarchical clustering was executed. Hyperactivation of MAPK was investigated using a recently described MAPK signature (Creighton et al, 2006), and was linked to tumour phenotype, ER and EGFR and/or ErbB2 overexpression. The expression of most ER-modulated genes was significantly elevated in breast tumours without transcriptionally active NF-ÎșB. In addition, the expression of most ER-modulated genes was significantly anticorrelated with the expression of most NF-ÎșB target genes, indicating an inverse correlation between ER and NF-ÎșB activation. Clustering using the combined ER and NF-ÎșB signature revealed one cluster mainly characterised by low NF-ÎșB target gene expression and a second one with elevated NF-ÎșB target gene expression. The first cluster was mainly characterised by non-IBC specimens and IHC ER+ breast tumours (13 out of 18 and 15 out of 18 respectively), whereas the second cluster was mainly characterised by IBC specimens and IHC ER− breast tumours (12 out of 19 and 15 out of 19 respectively) (Pearson χ2, P<0.0001 and P<0.0001 respectively). Hyperactivation of MAPK was associated with both ER status and tumour phenotype by unsupervised hierarchical clustering using the MAPK signature and was significantly reflected by overexpression of EGFR and/or ErbB2. NF-ÎșB activation is linked to loss of ER expression and activation in IBC and in breast cancer in general. The inverse correlation between NF-ÎșB activation and ER activation is due to EGFR and/or ErbB2 overexpression, resulting in NF-ÎșB activation and ER downregulation

    Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia

    Get PDF
    Louse-borne relapsing fever (LBRF) is known to have killed millions of people over the course of European history and remains a major cause of mortality in parts of the world. Its pathogen, Borrelia recurrentis, shares a common vector with global killers such as typhus and plague and is known for its involvement in devastating historical epidemics such as the Irish potato famine. Here, we de- scribe a European and historical genome of B. recurrentis, recov- ered from a 15th century skeleton from Oslo. Our distinct European lineage has a discrete genomic makeup, displaying an ancestral oppA- 1 gene and gene loss in antigenic variation sites. Our results illustrate the potential of ancient DNA research to elucidate dynamics of re- ductive evolution in a specialized human pathogen and to uncover aspects of human health usually invisible to the archaeological record

    Distinguishing blood and lymph vessel invasion in breast cancer: a prospective immunohistochemical study

    Get PDF
    Recently, peritumoural (lympho)vascular invasion, assessed on haematoxylin–eosin (HE)-stained slides, was added to the St Gallen criteria for adjuvant treatment of patients with operable breast cancer (BC). New lymphatic endothelium-specific markers, such as D2-40, make it possible to distinguish between blood (BVI) and lymph vessel invasion (LVI). The aim of this prospective study was to quantify and compare BVI and LVI in a consecutive series of patients with BC. Three consecutive sections of all formalin-fixed paraffin-embedded tissue blocks of 95 BC resection specimens were (immuno)histochemically stained in a fixed order: HE, anti-CD34 (pan-endothelium) and anti-D2-40 (lymphatic endothelium) antibodies. All vessels with vascular invasion were marked and relocated on the corresponding slides. Vascular invasion was assigned LVI (CD34⊕ or ⊖/D2-40⊕) or BVI (CD34⊕/D2-40⊖) and intra- (contact with tumour cells or desmoplastic stroma) or peritumoural. The number of vessels with LVI and BVI as well as the number of tumour cells per embolus were counted. Results were correlated with clinico-pathological variables. Sixty-six (69.5%) and 36 (37.9%) patients had, respectively, LVI and BVI. The presence of ‘vascular' invasion was missed on HE in 20% (peritumourally) and 65% (intratumourally) of cases. Although LVI and BVI were associated intratumourally (P=0.02), only peritumoural LVI, and not BVI, was associated with the presence of lymph node (LN) metastases (pperi=0.002). In multivariate analysis, peritumoural LVI was the only independent determinant of LN metastases. Furthermore, the number of vessels with LVI was larger than the number of vessels with BVI (P=0.001) and lymphatic emboli were larger than blood vessel emboli (P=0.004). We demonstrate that it is possible to distinguish between BVI and LVI in BC specimens using specific lymphatic endothelium markers. This is important to study the contribution of both processes to BC metastasis. Furthermore, immunohistochemical detection of lymphovascular invasion might be of value in clinical practice

    elPrep: high-performance preparation of sequence alignment/map files for variant calling

    Get PDF
    elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline. elPrep is designed as a multithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the computation of several preparation steps to significantly speed up the execution time. For example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878), we reduce the execution time from about 1: 40 hours, when using a combination of SAMtools and Picard, to about 15 minutes when using elPrep, while utilising the same server resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome data (NA12878), elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical clinical study may contain sequencing data for hundreds of patients, elPrep can remove several hundreds of hours of computing time, and thus substantially reduce analysis time and cost
    • 

    corecore