3,285 research outputs found

    Critical brain networks

    Full text link
    Highly correlated brain dynamics produces synchronized states with no behavioral value, while weakly correlated dynamics prevents information flow. We discuss the idea put forward by Per Bak that the working brain stays at an intermediate (critical) regime characterized by power-law correlations.Comment: Contribution to the Niels Bohr Summer Institute on Complexity and Criticality (2003); to appear in a Per Bak Memorial Issue of PHYSICA

    Biologically inspired learning in a layered neural net

    Full text link
    A feed-forward neural net with adaptable synaptic weights and fixed, zero or non-zero threshold potentials is studied, in the presence of a global feedback signal that can only have two values, depending on whether the output of the network in reaction to its input is right or wrong. It is found, on the basis of four biologically motivated assumptions, that only two forms of learning are possible, Hebbian and Anti-Hebbian learning. Hebbian learning should take place when the output is right, while there should be Anti-Hebbian learning when the output is wrong. For the Anti-Hebbian part of the learning rule a particular choice is made, which guarantees an adequate average neuronal activity without the need of introducing, by hand, control mechanisms like extremal dynamics. A network with realistic, i.e., non-zero threshold potentials is shown to perform its task of realizing the desired input-output relations best if it is sufficiently diluted, i.e. if only a relatively low fraction of all possible synaptic connections is realized

    A Quadtree for Hyperbolic Space

    Full text link
    We propose a data structure in d-dimensional hyperbolic space that can be considered a natural counterpart to quadtrees in Euclidean spaces. Based on this data structure we propose a so-called L-order for hyperbolic point sets, which is an extension of the Z-order defined in Euclidean spaces. We demonstrate the usefulness of our hyperbolic quadtree data structure by giving an algorithm for constant-approximate closest pair and dynamic constant-approximate nearest neighbours in hyperbolic space of constant dimension d

    Self-organized Critical Model Of Biological Evolution

    Full text link
    A punctuated equilibrium model of biological evolution with relative fitness between different species being the fundamental driving force of evolution is introduced. Mutation is modeled as a fitness updating cellular automaton process where the change in fitness after mutation follows a Gaussian distribution with mean x>0x>0 and standard deviation σ\sigma. Scaling behaviors are observed in our numerical simulation, indicating that the model is self-organized critical. Besides, the numerical experiment suggests that models with different xx and σ\sigma belong to the same universality class. PACS numbers: 87.10.+e, 05.40.+jComment: 8 pages in REVTEX 3.0 with 4 figures (Figures available on request by sending e-mail to [email protected]

    Dissipative Abelian Sandpiles and Random Walks

    Full text link
    We show that the dissipative Abelian sandpile on a graph L can be related to a random walk on a graph which consists of L extended with a trapping site. From this relation it can be shown, using exact results and a scaling assumption, that the dissipative sandpiles' correlation length exponent \nu always equals 1/d_w, where d_w is the fractal dimension of the random walker. This leads to a new understanding of the known results that \nu=1/2 on any Euclidean lattice. Our result is however more general and as an example we also present exact data for finite Sierpinski gaskets which fully confirm our predictions.Comment: 10 pages, 1 figur

    Nearly ETH-Tight Algorithms for Planar Steiner Tree with Terminals on Few Faces

    Full text link
    The Planar Steiner Tree problem is one of the most fundamental NP-complete problems as it models many network design problems. Recall that an instance of this problem consists of a graph with edge weights, and a subset of vertices (often called terminals); the goal is to find a subtree of the graph of minimum total weight that connects all terminals. A seminal paper by Erickson et al. [Math. Oper. Res., 1987] considers instances where the underlying graph is planar and all terminals can be covered by the boundary of kk faces. Erickson et al. show that the problem can be solved by an algorithm using nO(k)n^{O(k)} time and nO(k)n^{O(k)} space, where nn denotes the number of vertices of the input graph. In the past 30 years there has been no significant improvement of this algorithm, despite several efforts. In this work, we give an algorithm for Planar Steiner Tree with running time 2O(k)nO(k)2^{O(k)} n^{O(\sqrt{k})} using only polynomial space. Furthermore, we show that the running time of our algorithm is almost tight: we prove that there is no f(k)no(k)f(k)n^{o(\sqrt{k})} algorithm for Planar Steiner Tree for any computable function ff, unless the Exponential Time Hypothesis fails.Comment: 32 pages, 8 figures, accepted at SODA 201

    How does object fatness impact the complexity of packing in d dimensions?

    Get PDF
    Packing is a classical problem where one is given a set of subsets of Euclidean space called objects, and the goal is to find a maximum size subset of objects that are pairwise non-intersecting. The problem is also known as the Independent Set problem on the intersection graph defined by the objects. Although the problem is NP-complete, there are several subexponential algorithms in the literature. One of the key assumptions of such algorithms has been that the objects are fat, with a few exceptions in two dimensions; for example, the packing problem of a set of polygons in the plane surprisingly admits a subexponential algorithm. In this paper we give tight running time bounds for packing similarly-sized non-fat objects in higher dimensions. We propose an alternative and very weak measure of fatness called the stabbing number, and show that the packing problem in Euclidean space of constant dimension d3d \geq 3 for a family of similarly sized objects with stabbing number α\alpha can be solved in 2O(n11/dα)2^{O(n^{1-1/d}\alpha)} time. We prove that even in the case of axis-parallel boxes of fixed shape, there is no 2o(n11/dα)2^{o(n^{1-1/d}\alpha)} algorithm under ETH. This result smoothly bridges the whole range of having constant-fat objects on one extreme (α=1\alpha=1) and a subexponential algorithm of the usual running time, and having very "skinny" objects on the other extreme (α=n1/d\alpha=n^{1/d}), where we cannot hope to improve upon the brute force running time of 2O(n)2^{O(n)}, and thereby characterizes the impact of fatness on the complexity of packing in case of similarly sized objects. We also study the same problem when parameterized by the solution size kk, and give a nO(k11/dα)n^{O(k^{1-1/d}\alpha)} algorithm, with an almost matching lower bound.Comment: Short version appears in ISAAC 201

    Optimized differential energy loss estimation for tracker detectors

    Full text link
    The estimation of differential energy loss for charged particles in tracker detectors is studied. The robust truncated mean method can be generalized to the linear combination of the energy deposit measurements. The optimized weights in case of arithmetic and geometric means are obtained using a detailed simulation. The results show better particle separation power for both semiconductor and gaseous detectors.Comment: 16 pages, 8 figures, submitted to Nucl. Istrum. Meth.

    Self-organized critical neural networks

    Full text link
    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters.Comment: 5 pages RevTeX, 7 figures PostScrip
    corecore