We show that the dissipative Abelian sandpile on a graph L can be related to
a random walk on a graph which consists of L extended with a trapping site.
From this relation it can be shown, using exact results and a scaling
assumption, that the dissipative sandpiles' correlation length exponent \nu
always equals 1/d_w, where d_w is the fractal dimension of the random walker.
This leads to a new understanding of the known results that \nu=1/2 on any
Euclidean lattice. Our result is however more general and as an example we also
present exact data for finite Sierpinski gaskets which fully confirm our
predictions.Comment: 10 pages, 1 figur