993 research outputs found

    Visual Search Strategies of Soccer Players Executing a Power vs. Placement Penalty Kick

    Get PDF
    Introduction: When taking a soccer penalty kick, there are two distinct kicking techniques that can be adopted; a ‘power’ penalty or a ‘placement’ penalty. The current study investigated how the type of penalty kick being taken affected the kicker’s visual search strategy and where the ball hit the goal (end ball location). Method: Wearing a portable eye tracker, 12 university footballers executed 2 power and placement penalty kicks, indoors, both with and without the presence of a goalkeeper. Video cameras were used to determine initial ball velocity and end ball location. Results: When taking the power penalty, the football was kicked significantly harder and more centrally in the goal compared to the placement penalty. During the power penalty, players fixated on the football for longer and more often at the goalkeeper (and by implication the middle of the goal), whereas in the placement penalty, fixated longer at the goal, specifically the edges. Findings remained consistent irrespective of goalkeeper presence. Discussion/conclusion: Findings indicate differences in visual search strategy and end ball location as a function of type of penalty kick. When taking the placement penalty, players fixated and kicked the football to the edges of the goal in an attempt to direct the ball to an area that the goalkeeper would have difficulty reaching and saving. Fixating significantly longer on the football when taking the power compared to placement penalty indicates a greater importance of obtaining visual information from the football. This can be attributed to ensuring accurate foot-to-ball contact and subsequent generation of ball velocity. Aligning gaze and kicking the football centrally in the goal when executing the power compared to placement penalty may have been a strategy to reduce the risk of kicking wide of the goal altogether

    Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma

    Get PDF
    Purpose: We investigated whether organoids can be generated from resected tumors of patients who received eight cycles of neoadjuvant FOLFIRINOX chemotherapy before surgery, and evaluated the sensitivity/resistance of these surviving cancer cells to cancer therapy. Experimental Design: We generated a library of 10 PDAC organoid lines: five each from treatment-naive and FOLFIRINOX-treated patients. We, first, assessed the histological, genetic, and transcriptional characteristics of the organoids and their matched primary PDAC tissue. Next, the organoids' response to treatment with single agents - 5-FU, irinotecan, and oxaliplatin - of the FOLFIRINOX regimen as well as combined regimen was evaluated. Finally, global mRNA-seq analyses were performed to identify FOLFIRINOX resistance pathways. Results: All 10 patient-derived PDAC organoids recapitulate histological, genetic, and transcriptional characteristics of their primary tumor tissue. Neoadjuvant FOLFIRINOXtreated organoids display resistance to FOLFIRINOX (5/5), irinotecan (5/5) and oxaliplatin (4/5) when compared to treatment-naive organoids (FOLFIRINOX: 1/5, irinotecan: 2/5, oxaliplatin: 0/5). 5-FU treatment responses between naive and treated organoids were similar. Comparative global transcriptome analysis of treatment-naive and FOLFIRINOX samples - in both organoids and corresponding matched tumor tissues - uncovered modulated pathways mainly involved in genomic instability, energy metabolism, and innate immune system. Conclusion: Resistance development in neoadjuvant FOLFIRINOX organoids, recapitulating their primary tumor resistance, suggests continuation of FOLFIRINOX therapy as an adjuvant treatment may not be advantageous for these patients. Gene expression profiles of PDAC organoids identify targetable pathways involved in chemoresistance development upon neoadjuvant FOLFIRINOX treatment, thus opening up combination therapy possibilities.Genome Instability and Cance

    Looking to Score: The Dissociation of Goal Influence on Eye Movement and Meta-Attentional Allocation in a Complex Dynamic Natural Scene

    Get PDF
    Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior

    Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution

    Get PDF
    The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1Ì…10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close

    Fossil evidence for spin alignment of SDSS galaxies in filaments

    Get PDF
    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic filaments. To this end, we constructed a catalogue of clean filaments containing edge-on galaxies. We started by applying the Multiscale Morphology Filter (MMF) technique to the galaxies in a redshift-distortion corrected version of the Sloan Digital Sky Survey DR5. From that sample we extracted those 426 filaments that contained edge-on galaxies (b/a < 0.2). These filaments were then visually classified relative to a variety of quality criteria. Statistical analysis using "feature measures" indicates that the distribution of orientations of these edge-on galaxies relative to their parent filament deviate significantly from what would be expected on the basis of a random distribution of orientations. The interpretation of this result may not be immediately apparent, but it is easy to identify a population of 14 objects whose spin axes are aligned perpendicular to the spine of the parent filament (\cos \theta < 0.2). The candidate objects are found in relatively less dense filaments. This might be expected since galaxies in such locations suffer less interaction with surrounding galaxies, and consequently better preserve their tidally induced orientations relative to the parent filament. The technique of searching for fossil evidence of alignment yields relatively few candidate objects, but it does not suffer from the dilution effects inherent in correlation analysis of large samples.Comment: 20 pages, 19 figures, slightly revised and upgraded version, accepted for publication by MNRAS. For high-res version see http://www.astro.rug.nl/~weygaert/SpinAlignJones.rev.pd
    • …
    corecore