144 research outputs found

    Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy.

    Get PDF
    Light-controlled drug delivery systems constitute an appealing means to direct and confine drug release spatiotemporally at the site of interest with high specificity. However, the utilization of light-activatable systems is hampered by the lack of suitable drug carriers that respond sharply to visible light stimuli at clinically relevant wavelengths. Here, a new class of self-assembling, photo- and pH-degradable polymers of the polyacetal family is reported, which is combined with photochemical internalization to control the intracellular trafficking and release of anticancer compounds. The polymers are synthesized by simple and scalable chemistries and exhibit remarkably low photolysis rates at tunable wavelengths over a large range of the spectrum up to the visible and near infrared regime. The combinational pH and light mediated degradation facilitates increased therapeutic potency and specificity against model cancer cell lines in vitro. Increased cell death is achieved by the synergistic activity of nanoparticle-loaded anticancer compounds and reactive oxygen species accumulation in the cytosol by simultaneous activation of porphyrin molecules and particle photolysis

    Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: Validation of the chemostat model using yeast culture data from literature

    Get PDF
    A model that predicts cell growth, lipid accumulation and substrate consumption of oleaginous fungi in chemostat cultures (Meeuwse et al. in Bioproc Biosyst Eng. doi:10.1007/s00449-011-0545-8, 2011) was validated using 12 published data sets for chemostat cultures of oleaginous yeasts and one published data set for a poly-hydroxyalkanoate accumulating bacterial species. The model could describe all data sets well with only minor modifications that do not affect the key assumptions, i.e. (1) oleaginous yeasts and fungi give the highest priority to C-source utilization for maintenance, second priority to growth and third priority to lipid accumulation, and (2) oleaginous yeasts and fungi have a growth rate independent maximum specific lipid production rate. The analysis of all data showed that the maximum specific lipid production rate is in most cases very close to the specific production rate of membrane and other functional lipids for cells growing at their maximum specific growth rate. The limiting factor suggested by Ykema et al. (in Biotechnol Bioeng 34:1268–1276, 1989), i.e. the maximum glucose uptake rate, did not give good predictions of the maximum lipid production rate

    Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(pentafluorophenyl acrylate)

    Get PDF
    Polysulfobetaines, polymers carrying highly polar zwitterionic side chains, present a promising research field by virtue of their antifouling properties, hemocompatibility, and stimulus-responsive behavior. However, limited synthetic approaches exist to produce sulfobetaine copolymers comprising hydrophobic components. Postpolymerization modification of an activated ester precursor, poly(pentafluorophenyl acrylate), employing a zwitterionic amine, 3-((3-aminopropyl)dimethylammonio)propane-1-sulfonate, ADPS, is presented as a novel, one-step synthetic concept toward sulfobetaine (co)polymers. Modifications were performed in homogeneous solution using propylene carbonate as solvent with mixtures of ADPS and pentylamine, benzylamine, and dodecylamine producing a series of well-defined statistical acrylamido sulfobetaine copolymers containing hydrophobic pentyl, benzyl, or dodecylacrylamide comonomers with well-controllable molar composition as evidenced by NMR and FT-IR spectroscopy and size exclusion chromatography.This synthetic strategy was exploited to investigate, for the first time, the influence of hydrophobic modification on the upper critical solution temperature (UCST) of sulfobetaine copolymers in aqueous solution. Surprisingly, incorporation of pentyl groups was found to increase solubility over a wide composition range, whereas benzyl groups decreased solubility—an effect attributed to different entropic and enthalpic contributions of both functional groups. While UCST transitions of polysulfobetaines are typically limited to higher molar mass samples, incorporation of 0–65 mol % of benzyl groups into copolymers with molar masses of 25.5–34.5 kg/mol enabled sharp, reversible transitions from 6 to 82 °C in solutions containing up to 76 mM NaCl, as observed by optical transmittance and dynamic light scattering. Both synthesis and systematic UCST increase of sulfobetaine copolymers presented here are expected to expand the scope and applicability of these smart materials
    • 

    corecore