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 Abstract  

A new class of organic solvent nanofiltration (OSN) membranes has been fabricated by 

assembling nano-sized polymer particles with methacrylate moieties onto the surface of 

crosslinked polyimide ultrafiltration support membranes. Multiple layers of these nanoparticles 

create a separation film functionally similar to the top layer of an asymmetric OSN membrane. 

Nanoscale interstitial spaces formed between the particles serve as permeation channels. In 

principle, manipulating the size of the nanoparticles can be used to control the dimensions of the 

interstitial spaces through which permeation occurs. Two different sizes of nanoparticles - 120 
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and 300 nm - were used. As expected, membrane separation performance changed with the size 

of nanoparticles employed due to the changes in interstitial dimensions. Crosslinked polyimide 

ultrafiltration membranes prepared by phase inversion were coated with successive layers of 

nanoparticles by spin coating. After coating the nanoparticles were crosslinked by photo initiated 

free radical polymerization using ultraviolet light (365nm wavelength). In addition to the size of 

the nanoparticles, the separation performance was also manipulated by changing the thickness of 

the nanoparticle layer. Membranes were characterized using scanning electron microscopy. The 

nanofiltration performance of these membranes was evaluated in solvents such as acetone and 

toluene. The molecular weight cut-off (MWCO) of the membranes was from 200-1,000 g.mol
-1

 

depending upon the nanoparticle diameter and thickness of the nanoparticle layer. Thus 

membranes with graded nanoscale porosities were successfully fabricated from interconnected 

nanoparticles providing control over membrane permeation performance. 

1. Introduction 

Organic solvent nanofiltration (OSN) is gaining importance among both academic and 

industrial researchers
1, 2

. OSN is a technique for economic and efficient separation of molecules 

in the range of 200-1,000 g.mol
-1

 which are dissolved in organic solvents. It has been 

successfully applied in a variety of chemical processes such as catalyst recovery, solvent 

recycling, chiral separations and ionic liquid separation
3-5

. The most widely studied and 

commercialized OSN membranes are asymmetric polymeric membranes prepared by the phase 

inversion technique. Polyimides (PI) are the most commonly used polymers for OSN due to their 

excellent thermal and chemical stability in organic solvents
6, 7

.  
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It is believed that the separation performance of these PI membranes is determined by the dense 

top layer formed during phase inversion. The separation performance (flux and rejection) can be 

varied by changing the solvent/co-solvent ratio and polymer weight % in the dope solution
8
; 

however achieving a wide range of MWCO and perfect separation of molecules in a narrower 

range using this technology is still difficult and limits the use of OSN membranes in many 

important applications. Accurate control over the membrane structure at molecular level has so 

far proved challenging using phase inversion. Membranes prepared by phase inversion typically 

have wide distribution of pore sizes in the separation layer, and control over the number of pores 

is still difficult.  

To overcome this problem there is a need for development of new methods for fabrication of 

OSN membranes with control of structure at a molecular level. To the best of our knowledge only 

a few studies are available on membrane fabrication using controlled building blocks to form 

permeation passages in a manipulated way
9-14

.  In these studies colloidal latex polymer particles 

were deposited on micro porous polymer supports to get membranes in ultra and microfiltration 

ranges for aqueous applications. Such colloids can be packed in regular arrays in which the bulk 

porosity depends on the geometry and is independent of the size of the nanoparticles
12-14

.  

Another interesting self-assembled porous membrane is S-layer lattice from Bacillus species 

after depositing cell wall fragments on a microfiltration membrane, cross-linking the S-layer 

protein with glutaraldehyde, and degrading the peptidoglycan with lysozyme
15-18

. This 

ultrafiltration S-layer composite membrane showed sharp molecular weight cut off with a very 

steep curve.  

In the last ten years block copolymers have gained attention due to the convenience of tuning 

size, shape and periodicity by changing their molecular parameters. Efforts have been made to 
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use block copolymers for fabricating nanostructured membranes
19

. Thomas et al. reviewed 

various methods to control block copolymer micro-domain structures in bulk states and in thin 

films
19

. Nanochannels can be created through processing of bicontinuous microdomain structure 

formed by microphase separation of a block copolymer. Continuous tortuous holes with 

nanometer scale diameters can be created by the selective degradation of one of the bicontinuous 

microdomain phases of micro-phase separated block copolymers
20

. Due to the structural 

versatility of block copolymers, they are used for analysis of permeation through polymeric 

materials. By correlating the permeability properties with the chemical structure of block 

copolymers, block copolymers can be modified towards high permeability
21

. 

Regular structures have also been obtained by introducing a melt of microphase separated 

polystyrene-block-polybutadiene into the pores of an anopore membrane via capillary action. 

Polymer cylindrical domains aligned parallel to the pore walls in the membrane
22

. Unfortunately, 

all the regular structures discussed above are still far from practical application in membranes. 

This paper reports, for the first time, the use of preformed nanoparticles of narrow size 

distribution in the fabrication of solvent stable membranes in the nanofiltration range. Layers of 

these nanoparticles on a porous support form interstitial spaces with a narrow size distribution 

that reflects nanoparticle diameter. These spaces can serve as uniform pores which determine the 

nanofiltration performance of the membrane. Pore size is governed by the size of the 

nanoparticles. Fabrication of these membranes involves the formation of nanoparticles, 

depositing a layer of these on the top of a support membrane, and then stabilizing this layer by 

crosslinking. By creating a controlled nanostructure in the top layer of a nanofiltration membrane, 

we seek the power to tune molecular permeation properties. 
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 This paper emphasises the fabrication of these membranes by using different sizes of 

nanoparticles, varying nanoparticle layer thickness, and evaluating the nanofiltration performance 

of the resulting membranes. Structural studies were undertaken using scanning electron 

microscopy. 

2. Materials and methods 

2.1 Materials 

The monomers, N-isopropylacrylamide (NIPAM) and 2-(hydroxy) ethyl methacrylate 

(HEMA), the crosslinker N, N’-Methylenebis(acrylamide) (BIS), the stabilizer dodecyl sulfate 

sodium salt (SDS) and triethylamine (TEA) used for the microgel synthesis were purchased from 

Sigma-Aldrich (Germany). 2, 2’-Azobis (2-methylpropionitrile) (AIBN) and acryloyl chloride 

(AcCl) were obtained from Acros Organics and Fluka, respectively.  The organic solvents used 

were of HPLC or analytical grade, and were purchased from Sigma-Aldrich (Germany). Milli-Q 

water (18.2 MΩ) was used in all experiments. 

P84 polyimide was purchased from HP Polymer GmbH (Austria) and used without any pre-

treatment. Organic solvents (all obtained from Sigma–Aldrich, UK) used to prepare the 

membranes and for filtration experiments were N, N-dimethylformamide (DMF), methanol, 

toluene, acetone and isopropanol (IPA). The crosslinker for the ultrafiltration support membranes 

was 1, 6-hexanediamine (HDA) purchased from Sigma–Aldrich (UK). Commercial membranes 

Starmem 122 (MWCO~220 gmol
-1

), Puramem 280 (MWCO~280 gmol
-1

) and S380 

(MWCO~380 gmol
-1

) (MWCO as provided by the supplier) were purchased from Evonik 

Membrane Extraction Technology Ltd (UK). 

2.2 Methods 

2.2.1 Nanoparticle synthesis 
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The PNIPAM-based microgel particles were synthesized by emulsion copolymerization of 

NIPAM and HEMA using BIS as the crosslinker. Polymerization took place in a 500 mL flask 

containing 200 mL Milli-Q water. Next, SDS (150 mg, 0.52 mmol) was added to the flask under 

stirring followed by the addition of BIS (339 mg, 2.2 mmol), NIPAM (8 g, 0.07 mol) and HEMA 

(1.5g, 11.5 mmol). The flask was sealed with a rubber septum and the reaction was purged with 

N2 for 30 minutes, before the addition of the initiator, AIBN (80 mg, 0.487 mmol, and 0.7 wt% 

with respect to the monomers). Then the flask was placed in an oil bath at 70 
o
C under stirring 

and the reaction was allowed to proceed for 4 hours before exposing it to air to quench the 

polymerization. The nanoparticles were purified using an ultrafiltration unit (IVSS Vivacell) 

equipped with a 10,000 MWCO cellulose membrane to remove the stabilizer and any unreacted 

starting materials. The purification process was repeated 2-3 times using fresh water before 

collecting the particles from the ultrafiltration unit as a dense paste (ca. 50 wt% polymer content).  

2.2.2 Particle acrylation  

The P(NIPAM-HEMA) nanoparticles were modified using acryloyl chloride to introduce 

polymerizable vinyl moieties on their surfaces. 3 g of nanoparticles were diluted with THF (ca. 

10 mL) and added to a dialysis membrane for solvent exchange against excess THF (700 mL) for 

2 days during which time the solvent was regularly replaced with fresh THF. Next, the 

nanoparticles (3 g in 30 mL THF) were transferred to a 100 mL round-bottom flask, and 

triethylamine (0.043 moles, ca. 1.2 eq. with respect to the HEMA moles) was added.  The flask 

was sealed with a rubber septum and placed in a thermostatted bath at 0 
o
C under magnetic 

stirring. Acryloyl chloride (390mg, 4.3mmol, 1 eq. with respect to the HEMA moles) was added 

dropwise using a glass needle. After 2 hours, the reaction was stopped and the mixture was 

dialyzed against water (1 L) for 2 days to remove the triethylammonium chloride salt formed and 
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any unreacted starting materials. The purified nanoparticle suspension was stored in water at 4 
o
C 

for further use. 

2.2.3 Ultrafiltration membrane preparation 

Dope solution was prepared by adding 22 wt% PI to DMF at room temperature. Following 

polymer dissolution the dope solution was left for 3 hours to remove air bubbles. The dope 

solution was then used to cast 250 µm thick viscous films on a polyester (PET) non-woven 

backing material (Kavon filters, USA), using an adjustable casting knife (Elcometer 3700) on a 

bench casting machine (Braive Instruments). An evaporation period of 20 seconds was allowed 

before immersion in a water coagulation bath at room temperature. Residual water was removed 

from the membrane by placing it in IPA for one hour. The membrane was transferred from IPA 

to the crosslinking solution (HDA in IPA). Following this, the membrane was rinsed with IPA to 

remove residual HDA. The membrane was finally subjected to the conditioning step in which it 

was kept for four hours in a conditioning solution comprising polyethylene glycol (PEG) 400/IPA 

(60/40 wt.%, respectively). The membrane was then air dried to remove solvent. 

2.2.4 Nanoparticles coating 

The nanoparticles were suspended in methanol (5 wt %). 1 wt% of UV initiator (55, 66-

Tetrahydroxy-3, 3, 3’, 3’-tetramethyl-1, 1’-spirobisindane) was also added to the nanoparticles 

suspension. The ultrafiltration membrane described above (sec 2.2.3) was coated with 

nanoparticles by spin coating. For each coat 0.5 ml of nanoparticles suspension was used and 

spread over the ultrafiltration membrane at 500 revolutions per minute (rpm) for the first 10 

seconds and 2000 rpm for a further 50 seconds and then dried for 30 seconds before the next coat. 

2.2.5 Crosslinking of nanoparticles 
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After the coating the membrane was irradiated under UV light (Black ray B-100 high intensity 

UV lamp, power 100 watts and wavelength 365 nm) for 3 hours to crosslink the nanoparticles by 

radical polymerization (conversion of methylmethacrylate to polymethylmethacrylate).  The 

membrane was then used without any further treatment. A summary of the membranes prepared 

in this way is presented in Table 1. 

Table1. Membrane preparation conditions 

Membrane 

code 

Nanoparticle 

diameter (nm) 

Nanoparticle coats 

applied 

Concentration of 

nanoparticles in 

suspension 

M1 ...... 0 (UF crosslinked support) ........ 

M2 120 1 5wt% 

M3 120 2 5wt% 

M4 120 3 5wt% 

M5 300 1 5wt% 

M6 300 2 5wt% 

M7 300 3 5wt% 

M8 300/120 2/2 5wt%/5wt% 

M9 300 1 2.5wt% 

M10 300 2 2.5wt% 

M11 300 3 2.5wt% 

 

2.3 Nanoparticles characterization 

2.3.1 Scanning electron microscopy (SEM) 

SEM images were recorded using  JEOL JSM-840 (large particles) and a field emission JSM-

7000F (small particles) microscopes at electron acceleration voltages of 10 and 15 kV, 
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respectively. Samples were prepared by diluting an aliquot of the stock nanoparticle suspension 

in THF (0.01 wt %). A drop of the sample (20 μL) was deposited onto a glass slide and left to dry 

overnight. The sample was sputter-coated with Au (10 nm thickness) before imaging. 

2.3.2 Dynamic light scattering (DLS) 

Samples were prepared by diluting an aliquot of the stock nanoparticle suspension in water (0.1 

wt%, 5 mL). Before measurement, the samples were filtered using a 5 μm pore size syringe filter 

and were transferred to a glass cuvette. A 3D LS Spectrometer from LS Instruments with a HeNe 

laser operating at λ=632.8 nm was used and all measurements were performed at 20
o
 C. The 

samples were measured for 600 seconds at each scattering angle.  

A single stretched exponential decay (KWW type) was used to fit the intensity autocorrelation 

functions 

               
 

 
                   

(1)
 

Where A is the amplitude, τ the relaxation time and q the stretching factor. The rate Γ for each 

angle was calculated as   
 

 
. From equation        the diffusion coefficient D was obtained 

from the slope of the linear fit of the graph of Γ versus q
2
. Finally, the diffusion coefficient and 

the hydrodynamic radius Rh are related by the Stokes Einstein equation: 

    
   

    
                   

(2) 

Where η is the viscosity of the solvent, kB is the Boltzmann constant and T is the temperature 

of the sample. 

2.3.3 Infrared spectroscopy (ATR-FTIR) 

ATR-FTIR spectra of dried samples were recorded on a Thermo-Electron Nicolet 6700 FTIR 

optical spectrometer at a resolution of 2 cm
-1

. 
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2.4 Membrane characterization 

2.4.1 Scanning electron microscopy (SEM) 

Images of cross-sectional areas of the membranes were obtained using SEM (Leo 1525 field 

emission scanning electron microscope, FESEM). After removing the backing material, 

membranes were snapped in liquid nitrogen, mounted onto SEM stubs, and coated with 

chromium using a chromium sputter coater (Emitech K575X). Applied SEM conditions were: a 

6.5mm working distance and an in lens detector with an excitation voltage of 5 kV. 

2.4.2 Nanofiltration experiments 

All nanofiltration experiments were carried out in a continuous cross-flow system, at 30×10
5
 Pa 

with toluene or acetone as a solvent at 27˚C and using feed flow rate of 80-100 L.h
-1

. Permeate 

samples for flux measurements were collected at intervals of 1 hour, and samples for rejection 

evaluations were taken after steady permeate flux was achieved. MWCO curves were obtained 

using a standard test solution composed of a homologous series of styrene oligomers dissolved in 

toluene and acetone. The styrene oligomer mixture contained 1 g.L
−1

 each of PS 580 and PS 1050 

(Polymer Labs, UK), and 0.01 g.L
−1

 of methylstyrene dimer (Sigma–Aldrich, UK). 

Concentrations of styrene oligomers in permeate samples were analyzed using an Agilent HPLC 

system with a UV/vis detector set at a wavelength of 264 nm. Separation was accomplished using 

an ACE 5-C18-300 column (Advanced Chromatography Technologies, ACT, UK). A mobile 

phase comprising 35 volume% analytical grade water and 65 volume% tetrahydrofuran with 0.1 

volume% triflouroacetic acid was used
23

. Solvent flux (J) was determined by measuring the 

volume of permeate (V) per unit area (A) per unit time (t) according to the following equation: 

   
 

  
                   (3) 

Flux decrease of the membranes (Df) was calculated according to the following equation: 
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                       (4) 

Where Ji is the initial flux and Js the flux at steady state (achieved when two flux measurements 

within a 1-hour interval showed the same value within ±2 Lm
−2

 h
−1

). Rejection (Ri) of styrene 

oligomers was evaluated applying Eq. (5) in which CPi and CFi correspond to styrene oligomers 

concentration in permeate and in feed solution, respectively. 

      
   

   
                       (5) 

The corresponding MWCO curves were obtained from a plot of the rejection of styrene 

oligomers versus their molecular weight.  

2.4.3 Calculation of nanoparticle layer thickness 

Physical thickness of membranes before and after coating with nanoparticles was measured 

with a micrometer (Mitutoyo Japan, range 0.0001µm). The number of nanoparticle layers was 

calculated as follows: 

Considering the nanoparticle as a sphere, the volume of one nanoparticle (Vn) was calculated 

as:  

    
     

  

 
                                                                                                            (6) 

Cross sectional area of one nanoparticle (An) was calculated as 

      
2
                   (7) 

Considering the nanoparticles as closely packed spheres the total number of nanoparticles in 

one layer (Nn) was calculated from equation 8 based on the assumption that if a perimeter of a 

single layer of nanoparticles is projected onto a two dimensional image, the result is a collection 

of circles on a surface and the area not covered by the circles is 10% of the total area covered
24

: 

   
  

  
                      (8) 
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Where Am is surface area of membrane.  

The total volume (V) of nanoparticles coated on the membrane was calculated as 

   
 

  
                              (9) 

Where w is the weight increase in the membrane after coating with nanoparticles and ρn is the 

density of nanoparticles. The total number of nanoparticles (Ntotal) coated can be calculated as:  

       
 

  
                 (10) 

Finally the number of nanoparticles layers (Ln) was calculated as: 

   
      

  
                 (11) 

The nanoparticle layer thickness (T) can be calculated as (packing density of 0.7408 is known 

to be the densest possible packing of equal spheres
25

).  

   
 

         
                             (12) 

 

3. Results and discussion 

3.1 Nanoparticle characterization 

The P(NIPAM-HEMA) microgel nanoparticles were synthesized by emulsion 

copolymerization in aqueous media. Owing to its sharp lower critical solution temperature at ca. 

32 
o
C, PNIPAM core seeds were rapidly formed soon after polymerization initiation at 70 

o
C, 

accompanied by the formation of hydrophilic PHEMA chains around the NIPAM-based 

precursors. Therefore, a core-shell topology was obtained in a one-pot type reaction (Figure 1A). 

The size of the microgels was controlled by adjusting the overall monomer concentration, the 

NIPAM/HEMA mole ratio and the surfactant concentration in the polymerization mixture. 
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Microgels of two different sizes (120 and 300 nm in diameter) were used throughout the study for 

the coating of the membranes’ surfaces. 

In order to facilitate the interparticle crosslinking onto the surfaces of the membranes, the 

hydroxyl-rich microgel shells were modified with acrylate moieties by esterification with 

acryloyl chloride (Figure 1B).  
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Figure 1. A) Schematic representation of the polymerization process followed for the synthesis 

of the crosslinked P (NIPAM-HEMA) particles; B) Schematic representation of the acrylation 

process employed to introduce crosslinkable vinyl groups on the surface of the particles. 

The size of the particles was determined by DLS measurements. The intensity autocorrelation 

functions at different scattering angles were found to be dominated by a single process, which is 

indicative of a single particle population (Figure 2A). The diffusion coefficient (D) was 
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calculated from the wavevector dependence of the rate of this process (Figure 2B) which 

corresponds to a hydrodynamic radius of  hR  = 148 nm for the large particles. A similar size ( hR  

= 141 nm) was found for the particles after the acrylation process, signifying that the mild 

conditions used for the acrylation reaction do not affect the particle size. Similarly, for the 

smaller particles (Figure 3) the hydrodynamic radius was hR  = 60 nm and hR  = 61nm before and 

after the acrylation reaction, respectively (Figure 3B). 
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Figure 2. A) Intensity autocorrelation functions for the large P(NIPAM-HEMA) particles’ 

dispersion at scattering angles 60
o
, 90

o
, 120

o
 and 150

o
. B) Rate as a function of q

2
 for the 

P(NIPAM-HEMA) particles and the acrylated P(NIPAM-HEMA) particles. The lines are linear 

fits to the data. 
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Figure 3. A) Intensity autocorrelation functions for the small P(NIPAM-HEMA) particles’ 

dispersion at scattering angles 30
o
, 50

o
, 70

o
, 90

o
, 110

o
 and 130

o
. B) Rate as a function of q

2
 for 

the P(NIPAM-HEMA) particles and the acrylated P(NIPAM-HEMA) particles. The lines are 

linear fits to the data. 

The morphology and the size of the P (NIPAM-HEMA) particles were also investigated by 

SEM (Figure 4). Particles of a spherical shape and a uniform size distribution with diameter 

SEMD  = 125 nm and 
SEMD  = 120 nm before and after acrylation, respectively were observed 

for the smaller particles (Figure 4, right). Overall, there is a good agreement between the particle 

sizes found by SEM and those calculated from the DLS measurements. The slightly smaller sizes 

obtained by SEM were attributed to the drying of the particles on the glass substrate which 

resulted in the partial collapse of the polymer network.  
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Figure 4. Typical SEM images of the 300 nm (left) and 120 nm (right) microgels. 

FTIR spectroscopy was used to verify the successful acrylation of the microgel particles by the 

presence of the vinyl bond vibration band. Figure 5B shows the FTIR spectrum of the acrylated 

particles, where the characteristic peak of the vinyl bond
26-28 

at 800 cm
-1

, which is absent in the 

spectrum of the precursor particles (Figure 5A), can be clearly seen. Besides, the characteristic 

ester and amide bands at 1500-1800 cm
-1

, present in the spectra of the particles both before and 

after acrylation, verify the successful incorporation of the co-monomers and the amido based 

crosslinker in the particles. Although the FTIR spectra confirm the successful surface 

modification of the particles, they do not allow quantification of the overall yield of the 

acrylation. It is expected though that the esterification reaction used should exceed 80% yield. 
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Figure 5. ATR-FTIR spectra of A) the P (NIPAM-HEMA) precursor particles and B) the 

acrylated P(NIPAM-HEMA) particles 

3.2 Nanoparticle coated membrane characterization 

3.2.1 Scanning electron microscopy of the membranes 

SEM images were taken of membrane cross sections at three different magnifications. Images 

were taken to calculate the nanoparticle layer thickness and the distribution of the nanoparticles 

on the ultrafiltration support. Figures 6 and 7 show the resulting asymmetric composite 

membranes with two different types of pore; a base of broadly dispersed irregular pores, and a 

top layer of narrow pores situated between uniformly packed spheres. The evenly spaced 

morphology is formed from the spin coating by evaporation of solvent. By comparing Figure 6 

with Figure 7 it is clear that the nanoparticle layer thickness increases with larger diameter 

nanoparticles. The mean pore size of the membrane changes with the change in thickness of the 

separating layer (nanofiltration results presented later confirm this trend). From the SEM images 
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some nanoparticle deformation is observed, which is more explicit for the larger nanoparticles 

(see the discussion in section 3.2.3). Another interesting observation from the SEM images is that 

the nanoparticles apparently penetrated into the pores of the ultrafiltration membranes. It seems 

likely that during the first coat, before formation of the particle layer, some particles penetrated 

through the bigger pores - a wide range of pore sizes are present in the ultrafiltration support. 

 

Figure 6. SEM images of a cross sectional area of polymer ultrafiltration support, with three 

coats of 120 nm diameter nanoparticles at three different magnifications 1.98KX, 10.29KX and 

78.99 KX. 
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Figure 7. SEM images of a cross sectional area of polymer ultrafiltration support with two coats 

of 300 nm diameter nanoparticles at three different magnifications 2.39KX, 15.99 KX and 69.01 

KX.  

3.2.2 Nanoparticle layer thickness and calculation of the number of nanoparticle layers in the 

film 

The nanoparticle layer thickness coated on the membrane was measured in two ways, and then 

compared with theoretical calculations based on closely packed spheres. All measurements are 

the average of 5 different points on 3 different disks. Thickness measured by SEM and micro 

meter showed similar values, but the calculated thicknesses were higher than the measured ones. 

Based on the results shown in Table 2 it seems that in the first coat not all nanoparticles were 

deposited on the surface. Some nanoparticles penetrated into the porous support (as confirmed by 

SEM images). The theoretically calculated thickness was based on the weight increase of the 

membrane after coating and did not take into account the particles in the porous support, which 
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contributes to  the calculated thickness being higher than the measured values. In addition particle 

deformation could be also responsible for this difference as will be discussed in the following 

section. As could be expected the thickness also increased with the increase of the size of 

nanoparticle. The nanoparticle layer thickness decreased for the same size of nanoparticle with 

same number of coats but with lower concentration. (Table 2, M9-M11) By lowering the 

concentration, the total number of nanoparticles deposited was smaller, making the nanoparticle 

layer thinner. It could be expected that a lower number of nanoparticles will result in a packing 

which deviates considerably from the ideal case of closely packed spheres, and consequently a 

wider pore size distribution due to defects in the packing. This hypothesis was confirmed by 

membrane separation performance. 

Table 2. Dimensions of the nanoparticles layers 

Membrane 

code 

No of layers Thickness 

calculated (µm) 

Thickness measured 

micrometer (µm)  

Thickness SEM 

measured (µm) 

M2 20 2.2 0.9 0.76 

M3 113 12.1 7.5 6.9 

M4 282 30.4 17.5 15.3 

M5 7 2.5 1.1 1.2 

M6 55 18.1 11.4 12.5 

M7 123 40.6 21.3 23.5 

M8 ..... 28.2 12.1 14.3 

M9 4 2.1 1.1 0.9 

M10 29 12.0 7.5 7.6 

M11 67 26.7 15.1 14.2 
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3.2.3   Nanofiltration experiments 

A continuous crossflow rig was used to perform nanofiltration experiments. Rejection of 

styrene oligomers was plotted against their molecular weights to determine the MWCO of the 

membranes coated with nanoparticles. All the results shown in Figures 8-15 were repeated three 

times for three different batches of membranes and these results were reproducible with 

coefficient of variation of 10% for both flux and rejection.  

According to the size of nanoparticles, membranes coated with them were not expected to 

separate molecules in the nanofiltration range (9-23nm estimated pore size, from Eq. 17, section 

3.2.4). However, the rejection of styrene oligomers indicated that separation in the nanofiltration 

range did in fact occur. This phenomenon was investigated in the light of nanoparticle layer 

formation. Formation of the nanoparticle film arises from the compaction, deformation, cohesion 

and polymer chain interdiffusion of individual particles. The particles are held apart by 

electrostatic or steric forces resulting from the polymer chain end groups. It is postulated that the 

particle layer is formed in three steps. The first step is evaporation of solvent and particle 

concentration and ordering. The second step is particle deformation, and the third step is polymer 

chain diffusion across the polymer boundaries
29-31

. 

Several factors affect the layer formation in this three stage process. Important factors are 

particle size, layer formation temperature, solvent concentration, time and drying environment
29

. 

The most important factor among these is the particle size. If the size of the particle is small then 

particles will pack and order quickly in more compact form in the first stage, the degree of 

deformation will be small in the next stage, and a more regular structure will be obtained. With 

larger particles, the interstitial space will be bigger in the first stage, with less organization of the 

particles, so deformation will be high in the second stage
32

. Our particles were 120 and 300nm in 
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size. Both sizes of nanoparticles could deform, however according to the above mechanism a 

higher degree of deformation is expected with the 300 nm nanoparticles. Although the SEM 

pictures do not allow easy detection, some indication of particle deformation can be observed in 

Figs. 6 and 7 if compared to their original shape (see Fig. 4).  In addition, the measured particle 

layer thicknesses are considerably smaller than those theoretically calculated based on closely 

packed uniform spheres ones (Table 2). We speculate that the particle deformation could be 

responsible for membrane separation performance in the nanofiltration range. Furthermore 

P(NIPAM) is well known for its interchangeable properties and ability to “switch” from a 

hydrophilic to hydrophobic structure (from swollen to non-swollen state) and vice versa. 

Typically this behavior has been observed in response to temperature stimuli (when lower critical 

temperature has been passed) in aqueous solutions
33

, however it could be possible that similar 

phenomena may occur in response to organic solvents. We did not find sufficient information in 

the literature on the material response to organic solvents and under pressure, and we are not sure 

whether the transport through the nanoparticles layer occurs solely through interstitial spaces 

between the particles or whether some transport is through the nanoparticles themselves. Our 

hypothesis is that the polystyrenes transport occurs through the interstitial spaces while the 

solvent permeates via both interstitial spaces (convective flow) and also through the nanaparticles 

themselves (diffusive flow). This hypothesis is supported by the findings of Cussler who 

discovered that when the P(NIPAM) gel swells, large solutes such as macromolecules will be 

excluded from entering the gel pores by steric hindrance and small solutes will freely penetrate 

the network
33

. 

The effect of the coating thickness of nanoparticles is shown in Figure 8. As the thickness of 

the top layer increases, so does the rejection because the pore size distribution becomes  narrower 
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as there are less coating defects and the resistance to flow increases. Increasing size of the 

nanoparticles results in a more open top layer structure and higher MWCO. This effect can be 

observed in Figure 9, which compares separation properties (MWCO) of membranes formed 

from nanoparticles with different diameters, and comparable nanoparticle layer thickness. As the 

size of nanoparticles is increased, the interstitial space between the particles increases and hence 

the membrane becomes looser. Figure 10 (a) & (b) shows a decrease in solvent flux with 

increased thickness of nanoparticle layer (thickness data in Table 2), because the resistance of the 

nanoparticle layer increases with thickness.  

Figure 11 shows the performance of multi-particle layers of different sized particles. 

Membranes were developed by coating first with particles of larger diameter, and then with 

smaller particles to decrease the mean pore size. As can be seen in Table 3 the membrane 

prepared in this way is tighter (MWCO 220), most likely due to the tighter packing of 

nanoparticles and patching of layer defects.  

 

 

 



25 

 

 

Figure 8. Rejection performances of nanoparticle membranes with respect to the number of coats 

(nanoparticle layer thicknesses respectively see Table 2) of (a) 120nm (b) 300 nm sized 

nanoparticles at 30 bar in PS/toluene solution and 27˚C 

 

Figure 9. Rejection performances of nanoparticle membranes with respect to the size of 

nanoparticles (120 nm, 300 nm) at 30 bar in PS/toluene solution and 27˚C 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 200 400 600 800 1000 1200 

%
 R

ej
ec

ti
o

n
 

Molecular weight (g.mol-1) 

M4 M3 M2 M1 

(a) 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 200 400 600 800 1000 1200 

%
 R

e
je

c
ti

o
n

 

Molecular weight (g.mol-1) 

M5 M6 M7 M1 

(b) 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 200 400 600 800 1000 1200 

%
 R

ej
ec

ti
o
n

 

Molecular weight (g.mol-1) 

M4 M6 



26 

 

  

Figure 10. Permeate fluxes of nanoparticle membranes with respect to number of coats of (a) 120 

nm (b) 300 nm sized particles at 30 bar and 27˚C in PS/toluene solution 

  

Figure 11. (a) Rejection performance (b) permeate flux of nanoparticle membranes with 2 coats 

of 300 nm sized particles and 2 coats of 120 nm sized particles at 30bar and 27˚C in PS/toluene 

solution 
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Figure 12 shows the effect of the concentration of nanoparticles on the membrane performance. 

It is clear from this figure that by decreasing the concentration of nanoparticles a more open 

membrane is obtained. One reason is the reduced thickness of the nanoparticle coat (Table 2), and 

most probably the presence of defects in the membranes with lower concentration. 

 

 

Figure 12. Rejection performances of nanoparticle membranes with respect to concentration of 

nanoparticles (a) 5 wt% nanoparticle solution (b) 2.5 wt% nanoparticle solution (300 nm) at 30 

bar in PS/toluene solution and 27˚C 
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there is no significant difference between the commercial membranes and the nanoparticle 

membrane when they are within the same MWCO range.  

  

Figure 13. (a) Rejection performance (b) permeate flux of nanoparticle membrane with 2 coats of 

300 nm sized particles and 2 coats of 120 nm sized particles and commercial membranes 

Starmem 122, Puramem 280 and S380  at 30bar and 27˚C in PS/toluene solution  

The nanoparticle coated membranes were also investigated at lower pressure (10 bar, Figures 14 

and 15) to evaluate the separation performance and nanoparticle layer stability, since it is possible 

that at lower pressure the nanoparticles could be more easily eluted from the membrane surface. 

The rejections were the same as at 30 bar pressure but as expected the fluxes were lower. The 

separation performance and flux remained stable during the test suggesting that the nanoparticle 

layer is not affected.   
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Figure 14. Rejection performances of nanoparticle membranes with respect to the number of 

coats (nanoparticles layer thicknesses respectively see Table 2) of (a) 120nm (b) 300 nm sized 

nanoparticles at 10 bar in PS/toluene solution and 27˚C 

 

Figure 15. Permeate fluxes of nanoparticle membranes with respect to number of coats of (a) 120 

nm (b) 300 nm sized particles at 10 bar and 27˚C in PS/toluene solution 
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Table 3 summarizes the membranes filtration performance in different solvents.  

Table 3 Nanofiltration results in different solvents 

 

Membrane 

code 

Toluene Acetone % Flux decrease 
a
 

Flux Lm
-2

h
-1

 

10bar/30bar 

MWCO 

gmol
-1

 

Flux Lm
-2

h
-1  

30 bar 

MWCO  

gmol
-1

 

M1 38/55 >> 1095 80 >>1095 30 

M2 27/45 ~550 72 ~440 19 

M3 21/35 ~450 68 ~360 18.5 

M4 18/25 ~340 44 ~260 17 

M5 15/35 > 1095 48 > 1095 16 

M6 8/24 > 1095 40 > 1095 15 

M7 4/15 ~500 30 ~500 14.5 

M8 -/20 ~220 40 ~220 10 

S122* -/17 ~270 ....... ........ 51 

Puramem* 

280 

-/20 ~280 ....... ....... 33 

S380* -/114 ~495 ....... ....... 12 

* Note that the Starmem 122, Puramem 280 and S380 are not stable in acetone so a comparison 

cannot be undertaken. 

a
 Calculated using Equation 4 

 

3.2.4  Membrane flow properties – application of different models 

Most of the models describing membrane transport assume the membranes is a porous medium, 

and a broad range of pore structures are possible such as cylindrical, irregular and interconnected 

pores. These structures define the flow properties of the membranes and are described by 
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different models. Formation of a nanoparticle layer on a porous polymer support results in an 

asymmetric composite structure (composite membrane). These composite membranes contain 

two distinct types of pores, large irregular pores in the polymer support and narrowly dispersed 

pores between the closely packed nanoparticles in the layer. The latter are assumed to determine 

the flow properties of the membrane. Dense packing of spherical nanoparticles is the most 

common and simple model system for flow through such porous media. For the general case of 

flow through porous medium Darcy’s law states the permeability as a direct relationship between 

rates of flow and pressure gradient. Carman-Kozeny theory using this Darcy’s law explains the 

flow through porous structures formed by packing of particles
34, 35

. 

The flow rate through a packed bed of closely packed spheres is given by the following 

equation 

   
      

   
   

          
                 (13)  

Where η is the fluid viscosity, Af is the area of the packed bed of length L, ρn is the density of 

nanoparticles, Dn is the diameter of nanoparticles, ΔP is the pressure difference across the 

membrane, M is the mass of latex particle per unit area and ε (~0.4) is the porosity of 

nanoparticle layer. Flux can be calculated by  

  
 

  
                                                                                                                                        (14)         

Carman-Kozeny correlates measured permeabilities with the internal surface area and solid 

volume fraction of porous medium and works in the laminar region where viscous forces are 

dominant
36-39

. This model explains the flow directly proportional to pressure drop and inversely 

proportional to fluid viscosity
40

.
 
According to these equations the resistance to flow of a 
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nanoparticle layer can be controlled by the particle size and the thickness of the nanoparticle 

layer – a trend which is in agreement with our experimental results.  

Another way to describe flow through a packed bed is to use equation established by Leva
35

. In 

this equation particles are considered smooth spheres, flow is laminar, and end effects are 

minimal. Applying this equation to a layer consisting of nanoparticles, the resistance can be 

calculated from its volume porosity ε, diameter of nanoparticles Dn, density of nanoparticles ρn 

and mass of nanoparticles applied per unit area M. 

  
            

    
   

                                                                                                                      (15) 

Then flux through the membrane can be calculated by transmembrane pressure ΔP and 

viscosity η 

   
   

  
                                                                                                                                      (16) 

 

Table 4. Flux estimation using Carman-Kozeny and Leva’s equations using toluene as solvent at 

30bar 

Membrane 

code 

Flux (Leva) m.h
-1 b

 Flux (Carman-Kozeny) m.h
-1 a

 Actual flux m.h
-1

 

M2 0.036 0.321 0.045 

M3 0.007 0.058 0.035 

M4 0.003 0.023 0.025 

M5 0.025 2.353 0.035 

M6 0.031 0.294 0.024 

M7 0.014 0.130 0.015 
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Table 5. Flux estimation using Carman-Kozeny and Leva’s equations using acetone as solvent at 

30bar  

Membrane 

code 

Flux (Leva) m.h
-1 b

 Flux (Carman-Kozeny) m.h
-1 a

 Actual flux m.h
-1

 

M2 0.036 0.184 0.072 

M3 0.006 0.033 0.068 

M4 0.003 0.013 0.044 

M5 0.254 1.352 0.048 

M6 0.031 0.169 0.040 

M7 0.014 0.075 0.030 

a
 calculated using equation 14, 

b
 calculated using equation 16 

  

Results in Table 4 and Table 5 show that flux calculated via the Carman-Kozeny equation is 

relatively high as compared to actual membrane flux. Leva’s equation predicted gives less 

deviation from the experimental flux values for 300nm sized nanoparticles but the flux predicted 

for 120nm sized nanoparticles is considerably lower than the experimental one. 

There are two major factors behind this difference. One of the most important factors is the size 

of particles and pores. The Carman-Kozeny equation applies for the particles and pores in the 

range of >0.25 mm. The pore sizes expected in this study was in the range of 9 to 23nm as 

calculated by equation 17 suggested by Wood and Sourirajan
41

. 

 
  

    
                       (17) 

The rejection performance suggests pore size to be even smaller, possibly due to particle 

deformation as explained in section 3.2.3. Apparently the flow properties change with the size of 

pores.  
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The second major factor is the response of nanoparticle layers in organic solvents.  The flow 

properties would also be affected by the degree of swelling of polymeric nanoparticles in 

different solvents and by the nanoparticle-solvent interaction. Thus the flow depends upon the 

packing material properties.  

Both models failed to describe the flow behavior properly, most likely due to the fact that they 

are developed for rigid non-swelling particles and not in the nanosize range. Particle-solvent 

interaction can be expected to vary with solvent properties including molecular volume and 

Hildebrand solubility parameter
42

. The Hildebrand solubility parameter of acetone and toluene 

are 19.7 and 18.3 MPa
1/2 

respectively. We calculated solubility parameter for P(NIPAM-HEMA) 

(the cross-linker was not taken into account) from the group contribution method as applied by 

Dunkel
43

 of 22.5 MPa
1/2

. This suggests that none of the above solvents would be a very “good” 

solvent for P(NIPAM-HEMA), however acetone would be a reasonable one. Thus the 

nanoparticles will swell more in acetone, allowing higher solvent penetration through the 

nanoparticle material. On the other hand increasing the degree of swelling of the nanoparticles 

will result in smaller interstitial spaces (smaller pores) thus decreasing the MWCO of 

membranes. Opposite effects will occur with toluene which is a “poor” solvent for P(NIPAM-

HEMA) resulting in lower degree of swelling of the nanoparticles, reduced solvent penetration 

through particle material, larger interstitial spaces and higher MWCO. Furthermore the molar 

volume of toluene (106 cm
3
.mol

-1
) is one and half times higher than acetone (73.3 cm

3
.mol

-1
) and 

could also contribute to its lower permeation rate. Moreover, size and shape (hydrodynamic 

radius) of oligostyrenes in different solvents could also result in different MWCOs
44

. Some 

studies suggest that the surface tension of solvent and hydrophilicity/hydrophobicity of particle 

surface are also major factors determining the flux and rejection of membranes
42

. In addition the 
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cross-linking of the nanoparticles will also affect the membrane performance. In short, there are 

many factors which should be considered when describing the transport through OSN membranes 

and despite the extensive research in this area membrane transport is still not well understood. 

Detailed mathematical description and understanding of the transport properties of our 

membranes prepared from nanoparticles is beyond the scopes of this paper. Our intention is to 

demonstrate that this method for membrane preparation is a viable alternative to the currently 

used phase inversion technique, which allows for better control over the membrane structure and 

separation properties. Further extensive investigations using a variety of nanoparticles might lead 

to improved control over the membrane structure and performance.   

 

4. Conclusion 

A new class of OSN membranes has been created by coating an ultrafiltration support with 

nanoparticles of different diameters, and then subsequently crosslinking the particles to make the 

membrane stable during filtration with organic solvents.  Using this technique membranes can be 

produced with a wide range of MWCO, and separation performance could be tuned by simply 

varying the size of the nanoparticles and thickness of the nanoparticles layer.  Furthermore, a 

multilayered combination of nanoparticles of different sizes broadens even further the potential 

of this technique which we believe offers an exciting new opportunity for producing membranes 

with finely tunable separation properties. 
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Nomenclature 

Af Area of packed bed (cm
2
) 

Am Area of membrane (cm
2
) 

An Cross sectional area of one nanoparticle (cm
2
) 

CFi Concentration of styrene oligomer in retentate (-) 

CPi Concentration of styrene oligomer in permeate (-) 

Dn Diameter of nanoparticle (cm) 

J Flux through the membrane (L.m
-2

.h
-1

) 

Ln Total number of nanoparticle layers coated on membrane (-) 

M Mass of latex per unit area (g.cm
-2

) 

Nn Total number of nanoparticle in one layer (-) 

ΔP Transmembrane pressure (Pa) 

Q Flow rate through packed bed of nanoparticles (cm
3
.s

-1
) 

R Resistance (cm
-1

) 

rint Void radius (cm) 

rn Radius of nanoparticle (cm) 

V Volume of nanoparticle coated on the membrane (cm
3
) 

Vn Volume of one nanoparticle (cm
3
) 

ρn Density of nanoparticles (g.cm
-3

) 

ε Porosity of bed (-) (value was taken from F.A.L. Dullien, "Porous Media. Fluid Transport 

and Pore Structure", 2nd edition, Academic Press Inc, 1992 for regular closely packed sphere 

η Viscocity of fluid  (Pa.s) (for acetone and toluene taken from Perry’s hand book for   

chemical engineers 6
th

 edition at 300K) 
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