433 research outputs found

    First observational application of a connectivity--based helicity flux density

    Full text link
    Measuring the magnetic helicity distribution in the solar corona can help in understanding the trigger of solar eruptive events because magnetic helicity is believed to play a key role in solar activity due to its conservation property. A new method for computing the photospheric distribution of the helicity flux was recently developed. This method takes into account the magnetic field connectivity whereas previous methods were based on photospheric signatures only. This novel method maps the true injection of magnetic helicity in active regions. We applied this method for the first time to an observed active region, NOAA 11158, which was the source of intense flaring activity. We used high-resolution vector magnetograms from the SDO/HMI instrument to compute the photospheric flux transport velocities and to perform a nonlinear force-free magnetic field extrapolation. We determined and compared the magnetic helicity flux distribution using a purely photospheric as well as a connectivity-based method. While the new connectivity-based method confirms the mixed pattern of the helicity flux in NOAA 11158, it also reveals a different, and more correct, distribution of the helicity injection. This distribution can be important for explaining the likelihood of an eruption from the active region. The connectivity-based approach is a robust method for computing the magnetic helicity flux, which can be used to study the link between magnetic helicity and eruptivity of observed active regions.Comment: 4 pages, 3 figures; published online in A&A 555, L6 (2013

    Viral delivery of antioxidant genes as a therapeutic strategy in experimental models of amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with no effective treatment to date. Despite its multi-factorial aetiology, oxidative stress is hypothesized to be one of the key pathogenic mechanisms. It is thus proposed that manipulation of the expression of antioxidant genes that are downregulated in the presence of mutant SOD1 may serve as a therapeutic strategy for motor neuronal protection. Lentiviral vectors expressing either PRDX3 or NRF2 genes were tested in the motor neuronal-like NSC34 cell line, and in the ALS tissue culture model, NSC34 cells expressing the human SOD1(G93A) mutation. The NSC34 SOD1(G93A) cells overexpressing either PRDX3 or NRF2 showed a significant decrease in endogenous oxidation stress levels by 40 and 50% respectively compared with controls, whereas cell survival was increased by 30% in both cases. The neuroprotective potential of those two genes was further investigated in vivo in the SOD1(G93A) ALS mouse model, by administering intramuscular injections of adenoassociated virus serotype 6 (AAV6) expressing either of the target genes at a presymptomatic stage. Despite the absence of a significant effect in survival, disease onset or progression, which can be explained by the inefficient viral delivery, the promising in vitro data suggest that a more widespread CNS delivery is needed

    Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events

    Get PDF
    Freely-propagating global waves in the solar atmosphere are commonly observed using Extreme UltraViolet passbands (EUV or "EIT waves"), and less regularly in H-alpha (Moreton-Ramsey waves). Despite decades of research, joint observations of EUV and Moreton-Ramsey waves remain rare, complicating efforts to quantify the connection between these phenomena. We present observations of four homologous global waves originating from the same active region between 28-30 March 2014 and observed using both EUV and H-alpha data. Each global EUV wave was observed by the Solar Dynamics Observatory, with the associated Moreton-Ramsey waves identified using the Global Oscillations Network Group (GONG) network. All of the global waves exhibit high initial velocity (e.g., 842-1388 km s1^{-1} in the 193A passband) and strong deceleration (e.g., -1437 - -782 m s2^{-2} in the 193A passband) in each of the EUV passbands studied, with the EUV wave kinematics exceeding those of the Moreton-Ramsey wave. The density compression ratio of each global wave was estimated using both differential emission measure and intensity variation techniques, with both indicating that the observed waves were weakly shocked with a fast magnetosonic Mach number slightly greater than one. This suggests that, according to current models, the global coronal waves were not strong enough to produce Moreton-Ramsey waves, indicating an alternative explanation for these observations. Instead, we conclude that the evolution of the global waves was restricted by the surrounding coronal magnetic field, in each case producing a downward-angled wavefront propagating towards the north solar pole which perturbed the chromosphere and was observed as a Moreton-Ramsey wave.Comment: 12 pages, 5 figures, accepted for publication in The Astrophysical Journa

    The 2013 February 17 sunquake in the context of the active region's magnetic field configuration

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region's magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope's instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake

    Flux cancellation and the evolution of the eruptive filament of 2011 June 7

    Get PDF
    We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular 2011 June 7 eruption. We analyse and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighbouring ARs (11227 & 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6-day period building up to the filament eruption, 1.7 x 10^21 Mx, 21% of AR 11226's maximum magnetic flux, was cancelled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 x 10^21 Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive polarity sunspot, which splits, with the largest section moving rapidly towards the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggests that the magnetic field configuration supporting the filament material is that of a flux rope.Comment: 18 pages, 7 figures. Submitted to ApJ in December 2015, accepted in June 201

    Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. Part III: Twist Number Method

    Get PDF
    We study the writhe, twist and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov--D\'emoulin equilibrium solution, non force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger--Prior formula that is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twist multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.Comment: To be published in Ap

    Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event

    Get PDF
    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.Comment: 12 pages, 12 figure

    Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    Get PDF
    Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-Amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims. An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods. Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results. The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of 1-9 G and 3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively.Fil: Long, David M.. Colegio Universitario de Londres; Reino UnidoFil: Valori, G.. Colegio Universitario de Londres; Reino UnidoFil: Pérez-Suárez, D.. Colegio Universitario de Londres; Reino UnidoFil: Morton, R. J.. University Of Northumbria; Reino UnidoFil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Characteristics of Cultivated Adult Human Nevocellular Nevus Cells

    Get PDF
    Nevus cells are of biologic interest because of their uncertain relationship to epidermal melanocytes and of clinical interest because of their statistical association with melanoma. We report a technique that allows reliable cultivation of nevus cells from small acquired and congenital nevi and permits in vitro characterization of this cell type. Morphologically, cultured nevus cells were found to closely resemble epidermal melanocytes from the same or comparably aged donors, manifesting marked dendricity and specific ultrastructural features characteristic of melanocytes; but could be distinguished by the presence of occasional large binucleate or trinucleate cells and by the frequent finding of grouped melanosomes in nevus cell cytoplasm. Growth kinetics were also similar for nevus cells and epidermal melanocytes, with population doubling times of 1-2 weeks in hormone-supplemented serum-fre-medium, and substantial growth enhancement by fetal bovine serum. As previously noted for epidermal melanocytes, nevus cells in serum-free culture demonstrated striking substrate responsiveness, with far greater attachment rates and degree of cytoplasmic spreading on fibronectin or type I/III collagen than on laminin, type IV collage, or uncoated plastic. These strong similarities in vitro suggest that morphologic and behavioral differences observed between epidermal melanocytes and nevus cells in the skin may result from local environmental influences rather than from intrinsic cellular differences. The availability of a satisfactory culture system for nevus cells may facilitate future investigations into their malignant potential and other biologic features

    Initiation of coronal mass ejections by sunspot rotation

    Get PDF
    We study a filament eruption, two-ribbon flare, and coronal mass ejection (CME) that occurred in NOAA Active Region 10898 on 6 July 2006. The filament was located South of a strong sunspot that dominated the region. In the evolution leading up to the eruption, and for some time after it, a counter-clockwise rotation of the sunspot of about 30 degrees was observed. We suggest that the rotation triggered the eruption by progressively expanding the magnetic field above the filament. To test this scenario, we study the effect of twisting the initially potential field overlying a pre-existing flux-rope, using three-dimensional zero-β MHD simulations. We first consider a relatively simple and symmetric system, and then study a more complex and asymmetric magnetic configuration, whose photospheric-flux distribution and coronal structure are guided by the observations and a potential field extrapolation. In both cases, we find that the twisting leads to the expansion of the overlying field. As a consequence of the progressively reduced magnetic tension, the flux-rope quasi-statically adapts to the changed environmental field, rising slowly. Once the tension is sufficiently reduced, a distinct second phase of evolution occurs where the flux-rope enters an unstable regime characterised by a strong acceleration. Our simulations thus suggest a new mechanism for the triggering of eruptions in the vicinity of rotating sunspots
    corecore