253 research outputs found

    Atomic and molecular far-infrared lines from high redshift galaxies

    Get PDF
    The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of farinfrared(FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z � 6), further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z > 6

    On the [CII]-SFR relation in high redshift galaxies

    Get PDF
    After two ALMA observing cycles, only a handful of [CII] 158μm158\,\mu m emission line searches in z>6 galaxies have reported a positive detection, questioning the applicability of the local [CII]-SFR relation to high-z systems. To investigate this issue we use the Vallini et al. 2013 (V13) model, based on high-resolution, radiative transfer cosmological simulations to predict the [CII] emission from the interstellar medium of a z~7 (halo mass Mh=1.17×1011MM_h=1.17\times10^{11}M_{\odot}) galaxy. We improve the V13 model by including (a) a physically-motivated metallicity (Z) distribution of the gas, (b) the contribution of Photo-Dissociation Regions (PDRs), (c) the effects of Cosmic Microwave Background on the [CII] line luminosity. We study the relative contribution of diffuse neutral gas to the total [CII] emission (Fdiff/FtotF _{diff}/F_{tot}) for different SFR and Z values. We find that the [CII] emission arises predominantly from PDRs: regardless of the galaxy properties, Fdiff/Ftot10F _{diff}/F_{tot}\leq 10% since, at these early epochs, the CMB temperature approaches the spin temperature of the [CII] transition in the cold neutral medium (TCMBTsCNM20T_{CMB}\sim T_s^{CNM}\sim 20 K). Our model predicts a high-z [CII]-SFR relation consistent with observations of local dwarf galaxies (0.02<Z/Z<0.50.02<Z/Z_{\odot}<0.5). The [CII] deficit suggested by actual data (LCII<2.0×107LL_{CII}<2.0\times 10^7 L_{\odot} in BDF3299 at z~7.1) if confirmed by deeper ALMA observations, can be ascribed to negative stellar feedback disrupting molecular clouds around star formation sites. The deviation from the local [CII]-SFR would then imply a modified Kennicutt-Schmidt relation in z>6 galaxies. Alternatively/in addition, the deficit might be explained by low gas metallicities (Z<0.1ZZ<0.1 Z_{\odot}).Comment: 9 pages, 6 figures, replaced with the version accepted for pubblication in Ap

    CO line emission from galaxies in the Epoch of Reionization

    Full text link
    We study the CO line luminosity (LCOL_{\rm CO}), the shape of the CO Spectral Line Energy Distribution (SLED), and the value of the CO-to-H2\rm H_2 conversion factor in galaxies in the Epoch of Reionization (EoR). To this aim, we construct a model that simultaneously takes into account the radiative transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO lines are excited. We then use it to post-process state-of-the-art zoomed, high resolution (30pc30\, \rm{pc}), cosmological simulation of a main-sequence (M1010MM_{*}\approx10^{10}\, \rm{M_{\odot}}, SFR100Myr1SFR\approx 100\,\rm{M_{\odot}\, yr^{-1}}) galaxy, "Alth{\ae}a", at z6z\approx6. We find that the CO emission traces the inner molecular disk (r0.5kpcr\approx 0.5 \,\rm{kpc}) of Alth{\ae}a with the peak of the CO surface brightness co-located with that of the [CII] 158μm\rm \mu m emission. Its LCO(10)=104.85LL_{\rm CO(1-0)}=10^{4.85}\, \rm{L_{\odot}} is comparable to that observed in local galaxies with similar stellar mass. The high (Σgas220Mpc2\Sigma_{gas} \approx 220\, \rm M_{\odot}\, pc^{-2}) gas surface density in Alth{\ae}a, its large Mach number (\mach30\approx 30), and the warm kinetic temperature (Tk45KT_{k}\approx 45 \, \rm K) of GMCs yield a CO SLED peaked at the CO(7-6) transition, i.e. at relatively high-JJ, and a CO-to-H2\rm H_2 conversion factor αCO1.5M(Kkms1pc2)1\alpha_{\rm CO}\approx 1.5 \, \rm M_{\odot} \rm (K\, km\, s^{-1}\, pc^2)^{-1} lower than that of the Milky Way. The ALMA observing time required to detect (resolve) at 5σ\sigma the CO(7-6) line from galaxies similar to Alth{\ae}a is 13\approx13 h (38\approx 38 h).Comment: 16 pages, 14 figures, accepted for publication in MNRA

    Mapping metals at high redshift with far-infrared lines

    Full text link
    Cosmic metal enrichment is one of the key physical processes regulating galaxy formation and the evolution of the intergalactic medium (IGM). However, determining the metal content of the most distant galaxies has proven so far almost impossible; also, absorption line experiments at z6z\sim6 become increasingly difficult because of instrumental limitations and the paucity of background quasars. With the advent of ALMA, far-infrared emission lines provide a novel tool to study early metal enrichment. Among these, the [CII] line at 157.74 μ\mum is the most luminous line emitted by the interstellar medium of galaxies. It can also resonant scatter CMB photons inducing characteristic intensity fluctuations (ΔI/ICMB\Delta I/I_{CMB}) near the peak of the CMB spectrum, thus allowing to probe the low-density IGM. We compute both [CII] galaxy emission and metal-induced CMB fluctuations at z6z\sim 6 by using Adaptive Mesh Refinement cosmological hydrodynamical simulations and produce mock observations to be directly compared with ALMA BAND6 data (νobs272\nu_{obs}\sim 272 GHz). The [CII] line flux is correlated with MUVM_{UV} as log(Fpeak/μJy)=27.2052.253MUV0.038MUV2\log(F_{peak}/\mu{\rm Jy})=-27.205-2.253\,M_{UV}-0.038\,M_{UV}^2. Such relation is in very good agreement with recent ALMA observations (e.g. Maiolino et al. 2015; Capak et al. 2015) of MUV<20M_{UV}<-20 galaxies. We predict that a MUV=19M_{UV}=-19 (MUV=18M_{UV}=-18) galaxy can be detected at 4σ4\sigma in 40\simeq40 (2000) hours, respectively. CMB resonant scattering can produce ±0.1μ\simeq\pm 0.1\,\muJy/beam emission/absorptions features that are very challenging to be detected with current facilities. The best strategy to detect these signals consists in the stacking of deep ALMA observations pointing fields with known MUV19M_{UV}\simeq-19 galaxies. This would allow to simultaneously detect both [CII] emission from galactic reionization sources and CMB fluctuations produced by z6z\sim6 metals.Comment: 13 pages, 6 figure

    Kinematics of z6z\geq 6 galaxies from [CII] line emission

    Get PDF
    We study the kinematical properties of galaxies in the Epoch of Reionization via the [CII] 158μ\mum line emission. The line profile provides information on the kinematics as well as structural properties such as the presence of a disk and satellites. To understand how these properties are encoded in the line profile, first we develop analytical models from which we identify disk inclination and gas turbulent motions as the key parameters affecting the line profile. To gain further insights, we use "Althaea", a highly-resolved (30pc30\, \rm pc) simulated prototypical Lyman Break Galaxy, in the redshift range z=67z = 6-7, when the galaxy is in a very active assembling phase. Based on morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk, and III) Disturbed Disk. We identify spectral signatures of merger events, spiral arms, and extra-planar flows in I), II), and III), respectively. We derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise information on the galaxy inclination is (not) available, the returned mass estimate is accurate within a factor 22 (44). A Tully-Fisher relation is found for the observed high-zz galaxies, i.e. L[CII](FWHM)1.80±0.35L_{\rm[CII]}\propto (FWHM)^{1.80\pm 0.35} for which we provide a simple, physically-based interpretation. Finally, we perform mock ALMA simulations to check the detectability of [CII]. When seen face-on, Althaea is always detected at >5σ> 5\sigma; in the edge-on case it remains undetected because the larger intrinsic FWHM pushes the line peak flux below detection limit. This suggests that some of the reported non-detections might be due to inclination effects.Comment: 14 pages, 12 figures, accepted for publication in MNRA

    CO excitation in the Seyfert galaxy NGC7130

    Get PDF
    We present a coherent multi-band modelling of the CO Spectral Energy Distribution of the local Seyfert Galaxy NGC7130 to assess the impact of the AGN activity on the molecular gas. We take advantage of all the available data from X-ray to the sub-mm, including ALMA data. The high-resolution (~0.2") ALMA CO(6-5) data constrain the spatial extension of the CO emission down to ~70 pc scale. From the analysis of the archival CHANDRA and NuSTAR data, we infer the presence of a buried, Compton-thick AGN of moderate luminosity, L_2-10keV ~ 1.6x10^{43} ergs-1. We explore photodissociation and X-ray-dominated regions (PDRs and XDRs) models to reproduce the CO emission. We find that PDRs can reproduce the CO lines up to J~6, however, the higher rotational ladder requires the presence of a separate source of excitation. We consider X-ray heating by the AGN as a source of excitation, and find that it can reproduce the observed CO Spectral Energy Distribution. By adopting a composite PDR+XDR model, we derive molecular cloud properties. Our study clearly indicates the capabilities offered by current-generation of instruments to shed light on the properties of nearby galaxies adopting state-of-the art physical modelling.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Luminescent hyperbolic metasurfaces.

    Get PDF
    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission &gt;0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate &gt;350% emission intensity enhancement relative to the bare semiconducting quantum wells

    Deep into the structure of the first galaxies: SERRA views

    Get PDF
    We study the formation and evolution of a sample of Lyman Break Galaxies in the Epoch of Reionization by using high-resolution (10pc\sim 10 \,{\rm pc}), cosmological zoom-in simulations part of the SERRA suite. In SERRA, we follow the interstellar medium (ISM) thermo-chemical non-equilibrium evolution, and perform on-the-fly radiative transfer of the interstellar radiation field (ISRF). The simulation outputs are post-processed to compute the emission of far infrared lines ([CII], [NII], and [OIII]). At z=8z=8, the most massive galaxy, `Freesia', has an age t409Myrt_\star \simeq 409\,{\rm Myr}, stellar mass M4.2×109MM_{\star} \simeq 4.2\times 10^9 {\rm M}_{\odot}, and a star formation rate SFR11.5Myr1{\rm SFR} \simeq 11.5\,{\rm M}_{\odot}{\rm yr}^{-1}, due to a recent burst. Freesia has two stellar components (A and B) separated by 2.5kpc\simeq 2.5\, {\rm kpc}; other 11 galaxies are found within 56.9±21.6kpc56.9 \pm 21.6 \, {\rm kpc}. The mean ISRF in the Habing band is G=7.9G0G = 7.9\, G_0 and is spatially uniform; in contrast, the ionisation parameter is U=22+20×103U = 2^{+20}_{-2} \times 10^{-3}, and has a patchy distribution peaked at the location of star-forming sites. The resulting ionising escape fraction from Freesia is fesc2%f_{\rm esc}\simeq 2\%. While [CII] emission is extended (radius 1.54 kpc), [OIII] is concentrated in Freesia-A (0.85 kpc), where the ratio Σ[OIII]/Σ[CII]10\Sigma_{\rm [OIII]}/\Sigma_{\rm [CII]} \simeq 10. As many high-zz galaxies, Freesia lies below the local [CII]-SFR relation. We show that this is the general consequence of a starburst phase (pushing the galaxy above the Kennicutt-Schmidt relation) which disrupts/photodissociates the emitting molecular clouds around star-forming sites. Metallicity has a sub-dominant impact on the amplitude of [CII]-SFR deviations.Comment: 22 pages, 14 figures, accepted by MNRA

    CO excitation in the Seyfert galaxy NGC 34: stars, shock or AGN driven?

    Full text link
    We present a detailed analysis of the X-ray and molecular gas emission in the nearby galaxy NGC 34, to constrain the properties of molecular gas, and assess whether, and to what extent, the radiation produced by the accretion onto the central black hole affects the CO line emission. We analyse the CO Spectral Line Energy Distribution (SLED) as resulting mainly from Herschel and ALMA data, along with X-ray data from NuSTAR and XMM-Newton. The X-ray data analysis suggests the presence of a heavily obscured AGN with an intrinsic luminosity of L1100keV4.0×1042_{\rm{1-100\,keV}} \simeq 4.0\times10^{42} erg s1^{-1}. ALMA high resolution data (θ0.2\theta \simeq 0.2'') allows us to scan the nuclear region down to a spatial scale of 100\approx 100 pc for the CO(6-5) transition. We model the observed SLED using Photo-Dissociation Region (PDR), X-ray-Dominated Region (XDR), and shock models, finding that a combination of a PDR and an XDR provides the best fit to the observations. The PDR component, characterized by gas density log(n/cm3)=2.5{\rm log}(n/{\rm cm^{-3}})=2.5 and temperature T=30T=30 K, reproduces the low-J CO line luminosities. The XDR is instead characterised by a denser and warmer gas (log(n/cm3)=4.5{\rm log}(n/{\rm cm^{-3}})=4.5, T=65T =65 K), and is necessary to fit the high-J transitions. The addition of a third component to account for the presence of shocks has been also tested but does not improve the fit of the CO SLED. We conclude that the AGN contribution is significant in heating the molecular gas in NGC 34.Comment: Accepted for publication in MNRAS. 10 pages, 6 figure
    corecore