23 research outputs found

    High quality factor 1-D Er 3+ -activated dielectric microcavity fabricated by RF-sputtering

    Get PDF
    Rare earth-activated 1-D photonic crystals were fabricated by RF-sputtering technique. The cavity is constituted by an Er3+-doped SiO2 active layer inserted between two Bragg reflectors consisting of ten pairs of SiO2/TiO2 layers. Scanning electron microscopy is employed to put in evidence the quality of the sample, the homogeneities of the layers thickness and the good adhesion among them. Near infrared transmittance and variable angle reflectance spectra confirm the presence of a stop band from 1500 nm to 2000 nm with a cavity resonance centered at 1749 nm at 0° and a quality factor of 890. The influence of the cavity on the 4I13/2 -> 4I15/2 emission band of Er3+ ion is also demonstrated

    Glass-based 1-D dielectric microcavities

    Get PDF
    We have developed a reliable RF sputtering techniques allowing to fabricate glass-based one dimensional microcavities, with high quality factor. This property is strongly related to the modification of the density of states due to the confinement of the gain medium in a photonic band gap structure. In this short review we present some of the more recent results obtained by our team exploiting these 1D microcavities. In particular we present: (1) Er3+ luminescence enhancement of the 4I13/2 → 4I15/2 transition; (2) broad band filters based on disordered 1-D photonic structures; (3) threshold defect-mode lasing action in a hybrid structure

    Symmetry induced selective excitation of topological states in SSH waveguide arrays

    Full text link
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Here, we report on topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su-Schrieffer-Heeger (SSH) mirror symmetric waveguides. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bi-directional topological transitions between symmetric and antisymmetric TZMs can be achieved with our proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks

    Coherent emission from fully Er 3+ doped monolithic 1-D dielectric microcavity fabricated by rf-sputtering

    Get PDF
    All Er3+ doped dielectric 1-D microcavity was fabricated by rf sputtering technique. The microcavity was constituted by half wave Er3+ doped SiO2 active layer inserted between two Bragg reflectors consists of ten pairs of SiO2/TiO2 layers also doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements confirm the third and first order cavity resonance at 530 nm and 1560 nm, respectively. The photoluminescence measurements were obtained by optically exciting at the third order cavity resonance using 514.5 nm Ar+ laser with an excitation angle of 30°. The Full Width at Half Maximum of the emission peak at 1560 nm decrease with the pump power until the spectral resolution of the detection system of ∌1.0 nm. Moreover, the emission intensity presents a non-linear behavior with the pump power and a threshold at about 24 mW was observed with saturation of the signal at above 185 mW of pump power

    Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    No full text
    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications
    corecore