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A B S T R A C T

All Er3+ doped dielectric 1-D microcavity was fabricated by rf sputtering technique. The microcavity was
constituted by half wave Er3+ doped SiO2 active layer inserted between two Bragg reflectors consists of ten pairs
of SiO2/TiO2 layers also doped with Er3+ ions. The scanning electron microscopy was used to check the mor-
phology of the structure. Transmission measurements confirm the third and first order cavity resonance at
530 nm and 1560 nm, respectively. The photoluminescence measurements were obtained by optically exciting at
the third order cavity resonance using 514.5 nm Ar+ laser with an excitation angle of 30°. The Full Width at Half
Maximum of the emission peak at 1560 nm decrease with the pump power until the spectral resolution of the
detection system of ∼1.0 nm. Moreover, the emission intensity presents a non-linear behavior with the pump
power and a threshold at about 24mW was observed with saturation of the signal at above 185mW of pump
power.

1. Introduction

Rare earth-activated glasses are one of the key materials in photonic
systems because of their relevance for the development of optical am-
plifiers and light sources [1,2] and recently many effort was directed to
develop appropriate material systems and configurations to exploit at
the best luminescence properties of rare earth ions like Er3+ ions [3,4].
A possibility to enhance emission properties of emitters is given by
tailoring their surrounding [5,6] and with this aim, several approaches,
using nanocomposite materials or specific geometries, such as planar
interfaces, photonic crystals, solid state planar microcavities, dielectric
nanospheres, and spherical microresonators, have been proposed.
Moreover, when only Er3+ ions are present in compact systems, the

pumping scheme become crucial since the Er3+ absorption cross sec-
tions are not so high. To alleviate this issue various configuration is
proposed such as addition of sensitizing ions of nanoparticles [7–10].

Among these different approaches and geometry, one-dimensional
(1-D) photonic crystals, are the simplest photonic band-gap (PBG) de-
vice exploitable to manipulate the emission and absorption properties
of rare earth ions [11–14] and they can be successfully used to obtain
stimulated emission [15]. However, to obtain stimulated emission from
an Erbium doped 1-D photonic crystals a careful tailoring of the geo-
metry and involved materials are needed. The systems, in fact, require
transparent materials at both excitation and emission wavelengths and
the correct configuration to enhance the spectroscopic feature of the
rare earth ions at all the involved wavelengths [14,16].
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Oxide-based dielectric materials are particularly suitable for fabri-
cating active PBG structures because they have wide transparency from
the ultraviolet to the near-infrared. Furthermore, oxide-based dielectric
materials have good resistance to temperature, corrosion and radiation
as well [17–19].

To fabricate dielectric-based 1-D photonic crystals with suitable
geometry to influence the spectroscopic features of the embedded er-
bium ions at both excitation and emission wavelengths the control and
reproducibility in the deposition of thin dielectric layers is mandatory.
Processes like ion implanting [6], sol–gel [12,20], electron-beam eva-
poration [21], sputtering [13,14,17] can be successfully employed for
the fabrication of microcavities based on oxide dielectric materials.
However, to reach high quality factor Q using dielectric material, where
the refractive indexes difference between the different materials is not
so high as for the semiconductor, the real time control of the deposition
process is mandatory to allow a precise tailor of the deposition rate and
obtain a enough good uniformity in thickness [13,14]. We have de-
monstrated as the rf sputtering is a suitable technique for fabrication of
dielectric microcavities and to deposit alternating layers of different
materials activated by rare-earth ions with controlled refractive index
and thickness [13,14].

However, in these configurations, the absorption of the pump beam
and the optical gain-length product are limited owing to the short ac-
tive regions of the vertical-cavity structures when only the defect layer
is activated. It is demonstrated as an optically pumped organic vertical-
cavity laser, in which the whole layer including the Bragg reflectors was
doped with laser dye, the lasing threshold was reduced compared with
a laser with undoped Bragg reflectors under similar conditions [22] and
rf-sputtering is a suitable technique to fabricate films activated with by
Er3+ ions [13,23]. Moreover, it is also known as PBG structures not
only enhance the emission properties of the embedded active systems
but such structures can successfully employed to enhance the absorp-
tion feature of systems [24].

In the present work, an Er3+ doped SiO2/TiO2 1D photonic crystal
with all TiO2 and SiO2 layers doped Er3+ is fabricated with rf-sputtering
technique and a suitable geometry and pumping scheme is proposed,
taking advantage of the third order cavity resonance for the excitation
and the fundamental for the detection, to put in evidence the possibility
of coherent emission.

2. Experimental

1-D Er3+ doped dielectric microcavity is fabricated by RF sputtering
technique. Thin films of SiO2 and TiO2 both doped with Er3+ are used
to fabricate the microcavity. The samples were deposited on SiO2 and Si
substrates. The samples were deposited on Si was employed for scan-
ning electron microscopy (SEM) and energy dispersive spectroscopy
(EDS) measurements. The sample deposited on SiO2 was employed for
optical and spectroscopic measurements. The substrates were cleaned
inside the rf sputtering deposition chamber by heating at 120 °C for 30′

just before the deposition procedure. The sputtering deposition of the
films was performed by sputtering alternatively changing a 15×5cm2

titania and 15× 5cm2 silica targets on which metallic erbium pieces
were placed. The deposition time necessary to reach the appropriate
thickness of the Bragg layers, are about 55min for silica layer and 1 h
30min for titania layers respectively. The deposition time necessary to
reach the appropriate thickness of the silica defect layer, to obtain the
cavity resonance centered at 1560 nm is about 1 h 55min. The residual
pressure before the deposition is 4.5× 10−7 mbar. During the deposi-
tion procedure, the substrates were not heated and the temperature of
the sample holder during the deposition is 30 °C. The sputtering oc-
curred with an Ar gas pressure of 5.4× 10−3 mbar, the applied rf
power was 150W and 130W for silica and titania targets respectively.
To monitor the thickness of the layers during the deposition, two quartz
microbalances Inficon instruments thickness monitor model SQM-160,
faced on the two targets were employed. Thickness monitor was

calibrated for the two kinds of materials by a long deposition process
(24 h of deposition) and by directly measuring the thickness of the
deposited layer by an m-line apparatus [25]. The final resolution on the
effective thickness obtained by this quartz microbalance is about 1Å.
More details are available in reference [14]. The samples were heat
treated at 400 °C for 6 h using the conventional oven.

The compositional analysis was performed using EDS, employing a
Oxford mod. INCA PentaFETx3 apparatus. EDS measurement was em-
ployed in particular to quantify the Erbium content in each layer. SEM
was used to analyze the morphology of the multi layer films and
thickness of each layer. The cross section of the microcavity was ana-
lyzed by a FEG mod. JEOL JSM-7001 F apparatus at 15 kV after cov-
ering the films with a 20 nm gold layer.

The transmittance measurement of the cavity in the NIR and visible
region at zero degree of incident angle was obtained by using a double
beam Varian-Cary spectrophotometer.

The spectroscopic features of the Er3+ doped dielectric microcavity
were investigated upon excitation at 514.5 nm using the line of an Ar+

ion laser and upon excitation at 980 nm using a diode laser. A convex
lens of 20 cm focal length was used to focus the excitation beam on the
microcavity with a spot of about 100 μm for the 514.5 nm excitation
wavelength and of about 250 μm for the 980 nm excitation. The angle
of excitation was carefully chosen at 30° to match the third order cavity
resonance in case of 514.5 nm excitation. The photoluminescence from
the microcavity was detected at 0° from the normal on the samples,
with a solid angle of 10−1 sr. The emission was dispersed by a 320mm
single-grating monochromator with a resolution of 1 nm. The light was
detected by using a Hamamatsu photomultiplier tube and standard
lock-in technique. The excitation power of the incident beam was
controlled by using neutral density filters. More details about the ex-
perimental set up can be found here [14].

3. Results

SEM micrograph of the all Er3+ doped 1D dielectric microcavity
cross section is reported in Fig. 1. The structure consists of 10 pairs of
SiO2/TiO2 layers on each Bragg mirror with a central defect layer of
SiO2 doped with Er3+. The dark regions showed in Fig. 1 correspond to
the SiO2 layer and the bright regions correspond to the TiO2 layer. The
substrate is located at the bottom of the image and the air on the top. It
is possible to identify the defect layer and the two Bragg reflectors. EDS
measurements indicate that the Erbium content in all the layers is about
0.3 ± 0.1mol%. The thickness and refractive indices of SiO2, TiO2 thin
films were measured using m-line technique in the 1.5 μm range
[13,25] on reference single SiO2 and TiO2 films fabricated using the
protocol employed for the photonic crystal. The refractive indices for
SiO2 and TiO2 are 1.44 and 2.2 respectively. The thickness of each layer

Fig. 1. SEM micrograph of the Er3+ doped 1D dielectric microcavity cross
section. The bright and dark region corresponds to TiO2 and SiO2 layers, re-
spectively. The substrate is located on the bottom of the images and air on the
top.
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was monitored during the deposition using the quartz microbalance.
The final thickness of each layer measured by SEM microscopy on the
Bragg mirror was 270 ± 5 and 170 ± 5 nm for the silica and titania
layers, respectively, and a thickness of 540 ± 5 nm for the SiO2 doped
with Er3+defect layer.

The transmittance spectra of the sample are reported in Fig. 2. It is
possible to identify the stop band from 1320 nm to 1830 nm is shown in
Fig. 2(a). A sharp peak in the transmission spectra appears at 1559 nm
corresponds to the cavity resonance related to the Er3+ doped SiO2 half
wave layer inserted between two Bragg mirrors. The inset graph shows
the transmission spectrum obtained with resolution of 1 nm, shows the
resonance line. It is also possible to observe the third order stop band in
the visible region reported, enlarged, in Fig. 2(b), the third order of the
cavity resonance is also presents in the stop band and appears at
530 nm at 0° incident angle. The third order stop band presents in the
visible region and the cavity resonance appears at 530 nm at 0° incident
angle. At 30° incident angle, the cavity resonance shifted to 514.5 nm.

Fig. 3 is reported the photoluminescence spectra related to the 4I13/
2→

4I15/2 transition of the Er3+ ions obtained for the microcavity at
excitation power at 514.5 nm of 185mW and 24mW focalized on the
sample. The erbium emission from the microcavity is centered at
1560 nm with Full Width at Half Maximum FWHM of ∼1.0 ± 0.1 nm
that correspond to the resolution of the detection apparatus in the case
of excitation power of 185mW while with 24mW the FWHM corre-
spond to 2.5 ± 0.1 nm.

In order to determine the behavior of the features of the emission
with the excitation power, we evaluated the dependence of the emis-
sion intensity and FWHM with the 514.5 nm pump power. In Fig. 4 are
reported the behavior of the emission intensity at emission wavelength
of 1560 nm and FWHM as a function of different 514.5 nm excitation
powers with a detection angle of 0° and an excitation angle of 30°.

In Fig. 5 is reported the behavior of the emission intensity at
emission wavelength of 1560 nm with a detection angle of 0° and
FWHM as a function of different 980 nm excitation powers.

4. Discussion

From the behavior of the emission intensity at emission wavelength
of 1560 nm and FWHM as a function of different 514.5 nm excitation
powers with a detection angle of 0° and an excitation angle of 30° it is

Fig. 2. (a) Transmission spectrum of the cavity with two Bragg mirrors, each
one consisting of ten pairs of SiO2/TiO2 layers in the region between 450 nm
and 2500 nm. The first order stop band ranges from 1300 nm to 1850 nm. The
first order cavity resonance corresponds to the sharp maximum centered at
1559.2 nm. The incident light is unpolarized. (b) Transmission spectra re-
presenting third order stop band in the visible region between 500 nm and
560 nm with third order cavity resonance at 536 nm.

Fig. 3. 4I13/2→ 4I15/2 photoluminescence spectrum of the cavity activated by
Er3+ ions in 1D dielectric microcavity. The emission is recorded at 0° from the
normal on the samples upon excitation at 514.5 nm at the input power of
185mW (red line) and 24mW (blue line). (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 4. 4I13/2→ 4I15/2 photoluminescence peak intensity and FWHM (blue line)
at 1560 nm as a function of 514.5 nm pump power with 0° of detection angle
and 30° of excitation angle. Red and green line are the results of linear fit while
the blue line is a guide for the eyes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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possible to observe that the intensity behavior is not linear but 3 dif-
ferent behavior can be highlighted: (I) below 30mW of excitation
power the peak intensity is linear and at 0 pump power reach 0 in-
tensity; (II) between 30 and 180mW the peak intensity is again linear
but with different pendency than before and the red line that represent
the linear fit in this region intercept the x-axis at a value of pump power
of 24mW; (III) above a pump power of 185 mw it is reach a saturation
point and the intensity of the emission peak lean to decrease, it is im-
portant to note that reducing again the pump power below this sa-
turation point the intensity climb up again. Simultaneously there is a
narrowing of the FWHM from 2.5 nm at low pump power to around
1 nm which is limited by a spectral resolution of our experimental set
up. In the same experimental conditions, we also carried out the pho-
toluminescence measurements by exciting at 980 nm in order to check
the emission characteristics also for this pumping scheme.

It is worthy of attention that using the 980 nm excitation it is not
possible to find excitation angles that allow to match a resonance cavity
order with the laser line. In this configuration, as reported in Fig. 5, the
emission intensity vs input power graph is linear and the FWHM is
constant at about 2.6 ± 0.1 nm. The same behavior, with linear de-
pendency of the peak intensity with the excitation power and constant
FWHM is obtained pumping at 514.5 nm but with an angle different
from 30° therefore without exciting directly the third order of the cavity
resonance.

Luminescence decay curves from the 4I13/2 state of Er3+ ion ob-
tained recording the signal by a digital oscilloscope, with excitation
power at 514.5 nm of 185mW focalized on the sample, show a lifetime
of 300 μs that is close to the time resolution of the acquisition system. In
the case of excitation at 514.5 nm with a power of 24mW the signal is
too low to allow the recording of the decay curve behavior but exciting
at 980 nm with power of 200mW it is possible record the decay curve.
Also in this configuration the measured lifetime is of around 300 μs as
obtained upon excitation at 514.5 nm with power of 185mW, that is
one order of magnitude lower than the expected values of the lifetime
of the 4I13/2 level of Er3+ ions in SiO2 [26] and TiO2 [27] matrices. We
need to consider that is already observed in active microcavity [28] also
doped with rare earth ions [29] a drastic decrease of the spontaneous
emission lifetime with a decreasing that depends on the quality factor of
the structures. These results indicate as a more time resolved char-
acterization is needed for the complete characterization of such struc-
tures.

5. Conclusions

A protocol based on rf-sputtering technique for the fabrication of a
monolithic, fully doped Er3+ dielectric 1-D microcavity was defined.

The geometry of the structure is tailored to obtain the first order cavity
resonance at 1560 nm at 0° of detection and the third order of the re-
sonance at 514.5 nm at 30° respectively in order to match respectively
the emission in the NIR region of the Er3+ ions and the green Ar+ laser
line in the visible region for the excitation of the Er3+ ions.
Luminescence measurements demonstrate as the FWHM of the emission
peak intensity at 1560 nm decrease with the pump power until the
spectral resolution of the detection system of ∼1.0 nm. Moreover the
emission intensity present a non-linear behavior with the pump power
and a threshold at about 24mW was observed with saturation of the
signal at 180mW of pump power when excited in the third harmonic
cavity resonance. Upon excitation with 980 nm or upon 514.5 nm but
with an angle that do not allow the super impose the third harmonic
cavity resonance, the luminescence measurements indicate a linear
behavior of the emission peak at 1560 nm and a constant FWHM with
the excitation power. The results suggest the presence of coherent
emission from the sample and further measurements are in progress to
define the temporal dynamics of this emission.
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