224 research outputs found

    In vivo Biodistribution of Radiolabeled Acoustic Protein Nanostructures

    Get PDF
    Purpose: Contrast-enhanced ultrasound plays an expanding role in oncology, but its applicability to molecular imaging is hindered by a lack of nanoscale contrast agents that can reach targets outside the vasculature. Gas vesicles (GVs)—a unique class of gas-filled protein nanostructures—have recently been introduced as a promising new class of ultrasound contrast agents that can potentially access the extravascular space and be modified for molecular targeting. The purpose of the present study is to determine the quantitative biodistribution of GVs, which is critical for their development as imaging agents. Procedures: We use a novel bioorthogonal radiolabeling strategy to prepare technetium-99m-radiolabeled ([99mTc])GVs in high radiochemical purity. We use single photon emission computed tomography (SPECT) and tissue counting to quantitatively assess GV biodistribution in mice. Results: Twenty minutes following administration to mice, the SPECT biodistribution shows that 84 % of [99mTc]GVs are taken up by the reticuloendothelial system (RES) and 13 % are found in the gall bladder and duodenum. Quantitative tissue counting shows that the uptake (mean ± SEM % of injected dose/organ) is 0.6 ± 0.2 for the gall bladder, 46.2 ± 3.1 for the liver, 1.91 ± 0.16 for the lungs, and 1.3 ± 0.3 for the spleen. Fluorescence imaging confirmed the presence of GVs in RES. Conclusions: These results provide essential information for the development of GVs as targeted nanoscale imaging agents for ultrasound

    In vivo Biodistribution of Radiolabeled Acoustic Protein Nanostructures

    Get PDF
    Purpose: Contrast-enhanced ultrasound plays an expanding role in oncology, but its applicability to molecular imaging is hindered by a lack of nanoscale contrast agents that can reach targets outside the vasculature. Gas vesicles (GVs)—a unique class of gas-filled protein nanostructures—have recently been introduced as a promising new class of ultrasound contrast agents that can potentially access the extravascular space and be modified for molecular targeting. The purpose of the present study is to determine the quantitative biodistribution of GVs, which is critical for their development as imaging agents. Procedures: We use a novel bioorthogonal radiolabeling strategy to prepare technetium-99m-radiolabeled ([99mTc])GVs in high radiochemical purity. We use single photon emission computed tomography (SPECT) and tissue counting to quantitatively assess GV biodistribution in mice. Results: Twenty minutes following administration to mice, the SPECT biodistribution shows that 84 % of [99mTc]GVs are taken up by the reticuloendothelial system (RES) and 13 % are found in the gall bladder and duodenum. Quantitative tissue counting shows that the uptake (mean ± SEM % of injected dose/organ) is 0.6 ± 0.2 for the gall bladder, 46.2 ± 3.1 for the liver, 1.91 ± 0.16 for the lungs, and 1.3 ± 0.3 for the spleen. Fluorescence imaging confirmed the presence of GVs in RES. Conclusions: These results provide essential information for the development of GVs as targeted nanoscale imaging agents for ultrasound

    High power targets for cyclotron production of 99mTc‡

    Get PDF
    Introduction Technetium-99m, supplied in the form of 99Mo/99mTc generators, is the most widely used radioisotope for nuclear medical imaging. The parent isotope 99Mo is currently produced in nuclear reactors. Recent disruptions in the 99Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of 99mTc. Our approach involves the 100Mo(p,2n)99mTc reaction on isotopically enriched molybdenum using small medical cyclotrons (Ep ≤ 20 MeV), which is a viable method for the production of clinically useful quantities of 99mTc [2]. Multi-Curie production of 99mTc requires a 100Mo target capable of dissipating high beam intensities [3]. We have reported the fabrication of 100Mo targets of both small and large area tar-gets by electrophoretic deposition and subsequent sintering [4]. As part of our efforts to further enhance the performance of molybdenum targets at high beam currents, we have developed a novel target system (initially de-signed for the GE PETtrace cyclotron) based on a pressed and sintered 100Mo plate brazed onto a dispersion-strengthened copper backing. Materials and Methods In the first step, a molybdenum plate is produced similarly to the method described in [5] by compacting approximately 1.5 g of commercially available 100Mo powder using a cylindrical tool of 20 mm diameter. A pressure between 25 kN/cm2 and 250 kN/cm2 is applied by means of a hydraulic press. The pressed molybdenum plate is then sintered in a reducing atmosphere (Ar/2% H2) at 1,700 oC for five hours. The resulting 100Mo plates have about 90–95 % of the molybdenum bulk density. The 100Mo plate is furnace brazed at ~750 oC onto a backing manufactured from a disperse on strengthened copper composite (e.g. Glidcop AL-15) using a high temperature silver-copper brazing filler. This process yields a unique, mechanically and thermally robust target system for high beam power irradiation. Irradiations were performed on the GE PETtrace cyclotrons at LHRI and CPDC with 16.5 MeV protons and beam currents ≥ 100 µA. Targets were visually inspected after a 6 hour, 130 µA bombardment (2.73 kW/cm2, average) and were found fully intact. Up to 4.7 Ci of 99mTc have been produced to date. The saturated production yield remained constant between 2 hour and 6 hour irradiations. Results and Conclusion These results demonstrate that our brazed tar-get assembly can withstand high beam intensities for long irradiations without deterioration. Efforts are currently underway to determine maximum performance parameters

    Nuclear and Chloroplast Microsatellites Show Multiple Introductions in the Worldwide Invasion History of Common Ragweed, Ambrosia artemisiifolia

    Get PDF
    BACKGROUND: Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed. PRINCIPAL FINDINGS: We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted. CONCLUSIONS: This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments

    Peer Effects in Drug Use and Sex Among College Students

    Full text link
    Past research suggests that congregating delinquent youth increases their likelihood of problem behavior. We test for analogous peer effects in the drug use and sexual behavior of male ( n = 279) and female ( n = 435) college students, using data on the characteristics of first-year roommates to whom they were randomly assigned. We find that males who reported binge drinking in high school drink much more in college if assigned a roommate who also binge drank in high school than if assigned a nonbinge-drinking roommate. No such multiplier effect is observed for females, nor are multiplier effects observed for marijuana use or sexual behavior for either males or females. Students who did not engage in these behaviors in high school do not appear to be affected by their roommates’ high school behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44594/1/10802_2005_Article_3576.pd
    • …
    corecore