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A B S T R A C T

Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functio-
nalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry
in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11C-labeled tetrazine
([11C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out
using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bispho-
sphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting
agents in pair with [11C]AE-1. However, brain imaging in pig indicated that the tracer crossed the blood-brain-
barrier. Hence, we suggest that this tetrazine scaffold could be used as a starting point for the development of
pretargeted brain imaging, which has so far been a challenging task.

Positron emission tomography (PET) is a routinely used non-in-
vasive and quantitative nuclear imaging technology that allows for
biodistribution and pharmacokinetic studies of radiolabeled com-
pounds.1,2 Apart from this, PET is extremely useful in personalized
medicine, where it can provide guidance to identify which patients are
likely responders or non-responders to a particular therapy.3,4 Nano-
medicines, such as monoclonal antibodies (mAb), polymers or in-
organic nanoparticles have been used successfully as disease-targeting
vectors with selective uptake and retention at pathological sites.5 Un-
fortunately, very often considerable variations in uptake between pa-
tients have been observed and therefore overall treatment outcome
would benefit from a pre-screening method capable of selecting re-
sponding patients.5–7 For instance, in 2017 Lee and colleagues used PET
imaging to show that the treatment response of human epidermal

growth factor 2 (HER2)-targeted liposomal doxorubicin (MM-302)
correlated positively with the extent of EPR-mediated uptake of 64Cu-
MM-302.8 This study and similar ones have shown the value of PET-
based patient selection in clinical trials to tailor treatment.8–10

Conventional nuclear imaging of nanomedicines typically requires
long-lived radionuclides, e.g. zirconium-89 (t1/2 = 3.3 days), in order
to be compatible with their slow target accumulation and clearance.3

However, since the 1980s, conventional nuclear imaging has been
challenged by pretargeted imaging strategies.11,12 With this approach,
the target accumulation and clearance phase of the nanomedicine is
separated from the imaging phase, as two distinct agents are used for
each phase, as illustrated in Fig. 1. First, a nanomedicine functionalized
with a reactive tag (primary targeting agent) is administered and al-
lowed to reach the target tissue. The accumulation of the primary
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targeting agent usually takes several days. After a sufficient period of
time, a radiolabeled small molecule (secondary imaging agent) with a
compatible reactive tag is administered. The imaging agent will bind
selectively to the reactive tag of the nanomedicine, while the excess will
rapidly clear from the blood pool. In this way, the nanomedicine is
radiolabeled in vivo and the target imaged in a two-step approach. As a
result, good imaging contrast can be reached within a short time-frame
after injection of the radiolabeled compound, which is not possible for
conventional imaging using slow-accumulating nanomedicines.

Moreover, the pretargeted imaging strategy enables the use of short-
lived radionuclides, thus lowering the radiation burden to the patient.

Modern pretargeting strategies rely on bioorthogonal reactions, i.e.
chemical reactions that can proceed in vivo without interfering or in-
teracting with biochemical processes.13 Besides being inert towards
biological moieties, these types of reactions have to be fast. Based on
pretargeting strategies used in the clinic, reaction kinetics required for a
reaction to be successful in vivo should be within the range of
103–7 M−1 s−1.3 Early developed bioorthogonal reactions e.g. the
Staudinger ligation, the traceless Staudinger ligation, and the strain-

Fig. 1. Schematic illustration of a pretargeting strategy for nuclear imaging. A primary targeting agent functionalized with reactive tags is first administered and
allowed to accumulate in the target tissue. In the second phase, the secondary imaging agent is administered. The latter will bind/interact with the compatible
reactive tags of the primary targeting agent, which allows for imaging of the targeting agent accumulated in the target tissue.

Scheme 1. Radiosynthesis of [11C]AE-1 and subsequent conjugation to TCO-functionalized polyglutamic acid 2.

Fig. 2. Representative PET/CT images of mice injected i.t. with [11C]3 at 30, 60
and 90min p.i. Abbreviations: T= tumor. % ID/g= percentage injected dose
per gram of tissue.

Fig. 3. Stability studies in mice (left, n=3 per time point) and pig (right, n=2
per time point). Data are shown as mean and standard error of mean.
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promoted azide-alkyne [3+2] cycloaddition (SPAAC) have seen limited
applications in vivo due to their relatively slow reaction kinetics.13–16

To date, one of the most promising bioorthogonal reactions for pre-
targeting strategies is the tetrazine ligation, between a 1,2,4,5-tetrazine
(Tz) and dienophiles, most frequently trans-cyclooctene (TCO).17 Rate
constants up to 106 M−1 s−1 have been reported for this ligation.18 In
comparison to the SPAAC, the tetrazine ligation is faster by a factor of
approximately 105–8 for the most reactive Tz/TCO pairs.3 A number of
successful pretargeted imaging approaches based on the tetrazine li-
gation have been reported, in which the primary targeting vector is
functionalized with TCO-moieties and the Tz is radiolabeled and used
as the secondary imaging agent.19–25 So far, most of the reported Tz-
derivatives have been functionalized with different chelators and la-
beled with radiometals.19,21,22,26 This restricts pretargeted imaging to
extracellular targets since chelators greatly minimize cell membrane
permeability. For intracellular targets, either 11C- or 18F-labeled Tz-
derivatives would be advantageous. In 2017, Keinänen et al. evaluated
a 18F-labeled Tz in pretargeted imaging using internalizing TCO-mod-
ified mAbs.27 This hydrophilic Tz, which was functionalized with a
sugar moiety, showed limited use for this specific purpose due to poor
cell permeability.27 Another 18F-labeleld Tz reported by Denk et al. in
2014 has so far not been evaluated in pretargeting studies in vivo.28

Thus, considerable efforts are directed toward developing 11C- or 18F-
labeled Tz-derivatives.3 Our groups have developed a 11C-labeled Tz,
[11C]AE-1 (Scheme 1), which was designed to hold suitable char-
acteristics for pretargeting strategies across cell membranes.29 Herein,
we describe the preliminary in vivo evaluation of [11C]AE-1 in order to
validate its utility in pretargeted PET imaging.

The radiosynthesis of [11C]AE-1 (Scheme 1) was carried out as
previously reported, i.e. O-methylation of precursor 1 using [11C]me-
thyl iodide, but with a few modifications.29 The formation of a by-
product (Supplementary material) was sometimes observed during the

semi-preparative high-performance liquid chromatography (HPLC)
purification and/or the solid-phase extraction step. The byproduct
formation was suggested to arise as a result of radiolysis. This was re-
duced by changing the HPLC eluent from an acetonitrile (MeCN)-based
to an ethanol (EtOH)-based one.30,31 With the EtOH-based eluent, a
radiochemical purity of> 97% could be reached. Isolated radioactivity
amounts were 100–250MBq using a 40min proton beam (16MeV
beam in a 25 mikroA Scanditronix MC32NI cyclotron) and molar ac-
tivities (Am) were in the range of 50–350 GBq/μmol.

In a next step, we investigated the ability of [11C]AE-1 to be used in
a tetrazine ligation and therefore tried to ligate it to a TCO-functiona-
lized polyglutamic acid (2) (Scheme 1). Polyglutamic acid is an inter-
esting polymer for drug delivery purposes and it is used in several
clinical trials.32 As such, it would be beneficial to use this polymer for
personalized medicine approaches. In respect to pretargeted imaging,
polymers often display the possibility for higher TCO-loadings com-
pared to mAbs.3 In light of this, we considered 2 to be an interesting
primary targeting vector to evaluate. Synthesis of the polyglutamic acid
backbone (p(Glu(COOH)264)) was carried out according to Birke
et al.33,34 (synthesis is described in the Supplementary material) and
modified with (E)-cyclooct-4-en-1-yl(3-aminopropyl)carbamate via
amide coupling analogous to a previously reported method.35 The TCO-
conjugate, p(Glu(COOH)232-ran-Glu(TCO)32 (2) was characterized via
1H NMR, displaying a TCO-content of 12%, or more specifically 32
TCO-moieties per p(Glu(COOH)232) (Figs. S5 and S6). Following the
ligation between 2 (0.5mg in 1mL phosphate buffered saline (PBS))
and [11C]AE-1, full consumption of [11C]AE-1 was observed after only
1min at room temperature. The 11C-labeled polymeric ligation adduct
[11C]3 (∼7MBq, apparent specific activity 486MBq/mg) was injected
intratumorally (i.t.) into BALB/c mice bearing CT26 tumors (n=3).
PET/CT images (Fig. 2) up to 90min post injection (p.i.) displayed no
diffusion of [11C]3 out of the tumor during this time frame.

Fig. 4. Pretargeting studies with [11C]AE-1 and TCO-BP. (A) Representative PET/CT images showing the biodistribution of [11C]AE-1 in mice (n=3) (not pretreated
with TCO-BP) at 20, 30 and 40min p.i. The images show high uptake in the gall bladder and bladder, but no uptake in the shoulders and knees. (B) Extracted uptake
values of [11C]AE-1 in shoulder (purple), knee (orange) and muscle (grey) over time, where muscle is expected to have a low-uptake. (C) Representative PET/CT
images from pretargeting experiments showing the biodistribution of [11C]AE-1 20, 30 and 40min p.i in mice pretreated with TCO-BP 1 h prior to tracer admin-
istration (n=3). (D) Extracted uptake values for [11C]AE-1 in shoulder (purple), knee (orange) and muscle (grey) in pretargeting experiments with TCO-BP over
time, where muscle is expected to be a low-uptake tissue. Abbreviations: S= shoulder; H=heart; GB=gallbladder; L= liver; K= knee; B=bladder.
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Encouraged by these results, we set up a simplified pretargeting
experiment, in which the targeting vector, i.e. polymer 2 (0.5mg in
50 µL PBS/mouse, n=2), was injected directly into the tumor, fol-
lowed by intravenous (i.v.) administration of [11C]AE-1 (∼8MBq,
Am=190GBq/µmol). By injecting the targeting vector (2) i.t., we
aimed to ensure that there was polymer available at the tumor-site to
bind the Tz. Moreover, since the data in Fig. 2 showed neglectable
polymer diffusion from the tumor for at least 90min, a 1 h lag time
between administration of 2 and [11C]AE-1 for the simplified pre-
targeting experiments seemed appropriate. Unfortunately, quantifica-
tion of the PET data showed that there was no specific tumor uptake
and high levels of radioactivity were observed in the liver and bladder,
as early as 10min p.i. (Fig. S7A and B). In fact, the biodistribution
profile was comparable to the one of [11C]AE-1 in mice not pretreated
with 2 (Fig. S7C and D). A possible reason for this could be the in vivo
stability of the Tz. As [11C]AE-1 is a highly reactive Tz (the bis-pyridyl
substituents makes the Tz framework electron-deficient and extremely
reactive toward dienophiles), it is expected to be fairly unstable in
vivo.3 Although the Tz was relatively stable in saline over time (Fig.
S8), stability studies in mice (Fig. 3) revealed a rapid degradation of
[11C]AE-1 with approximately 47% intact tracer after 1min. Additional
stability studies by radio-TLC (Fig. S16) indicated that the Tz was un-
stable in plasma and only a small fraction was able to participate in
ligation to the TCO-moieties of 2.

In order to evaluate if the negative results could be attributed to the
in vivo properties of 2, we decided to use an already well-established

pretargeting set-up to test the potential of [11C]AE-1 as a secondary
imaging agent. In this set-up, a TCO-functionalized bisphosphonate
(TCO-BP) was used as a primary targeting vector. The advantage of this
set-up is that TCO-BP accumulates fast within sites of active bone me-
tabolism, e.g. knee joints and shoulders, and clears rapidly from the
blood pool.36 As such, pretargeted imaging experiments can be carried
out within a single day and without the need of tumor-bearing mice.
Consequently, the TCO-BP model is ideal to study pretargeting systems,
because of its simplicity and the possibility to accelerate the evaluation
process. Pretargeting experiments with TCO-BP were carried out as
previously published, but with minor modifications.36 [11C]AE-1 was
applied in tracer doses of high Am (150–350 GBq/µmol, n=3) as well as
in a carrier added set-up (5 GBq/µmol, 4.2 equivalents of Tz with regard
to the molar amount of administered TCOs, n=3). Additional carrier
has been shown to be beneficial in several different pretargeted imaging
strategies.3,27,37 However, there was no difference in the target uptake
(shoulder and knee) compared to control experiments (no TCO-BP in-
jected) in neither the high Am nor carrier-added experiments (Fig. 4).
This indicates that the Tz does not react with the TCO-BP in vivo. Alike
the pretargeting experiments with 2, a possible explanation for the un-
successful experiments is most likely the rapid degradation of [11C]AE-1.

Concurrently, we also evaluated if [11C]AE-1 could be used to image
targets across the blood-brain-barrier (BBB). In mice, no significant
difference between brain uptake of [11C]AE-1 and blood accumulation
(Fig. S7) was found. However, several tracers have shown differences in
BBB passage between rodents and higher species, in particular pigs.38 In
light of this, we decided to investigate the BBB penetration of [11C]AE-1
in pigs. Here, [11C]AE-1 showed brain uptake with a high influx rate
within the first 5min (Fig. 5). SUV values of approximately 2.5–3.0
were reached across the brain. As illustrated in Fig. 5B, the activity
levels of [11C]AE-1 are higher in brain regions than in blood. This in-
dicated that brain uptake was specific and that the uptake is not solely
attributed to radioactivity levels within the brain vasculature. Rapid
washout from the brain was observed, which is desirable for a sec-
ondary imaging agent for targets within the brain. Long brain retention
would only be expected after binding to a TCO-functionalized targeting
agent. Stability studies of [11C]AE-1 in pigs showed a slower degrada-
tion during the first 10min compared to in mice, whereafter it was
fairly similar (Fig. 3). Overall, more extensive studies have to be per-
formed in order to fully assess the potential of [11C]AE-1 as an imaging
agent for targets within the brain. However, at the moment there is no
primary targeting agent available for such evaluation studies.

In conclusion, we have herein summarized the results from our
preliminary in vivo evaluation of the 11C-labeled Tz, [11C]AE-1. The Tz
was successfully applied to radiolabel a TCO-functionalized poly-
glutamic acid. This ligation adduct was thereafter injected i.t. into
tumor-bearing mice, in which no diffusion from the tumor was ob-
served during 2 h of PET/CT scanning. Even though the pretargeting
experiments were unsuccessful, the BBB permeability of [11C]AE-1 in
pigs is encouraging and [11C]AE-1 could possibly be used to investigate
the fate of TCO-functionalized primary targeting agents in the brain.
However, further experiments have to be carried out to study the po-
tential to use this Tz for pretargeted imaging across the BBB.
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Fig. 5. PET imaging of [11C]AE-1 in pigs (n=2). (A) Representative transversal
(left), sagittal (middle) and coronal (right) PET images (summed images
6–20min) showing the distribution of [11C]AE-1in the brain of a pig. (B)
Regional time-activity curves of [11C]AE-1 in thalamus (red), striatum (purple),
cortex (blue) and cerebellum (green) with overlay of distribution in blood
(grey). Abbreviations: SUV= standardized uptake value (g/mL).
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