168 research outputs found

    A PCR-RFLP method for genotyping of inversion 2Rc in Anopheles coluzzii

    Get PDF
    Background: Genotyping of polymorphic chromosomal inversions in malaria vectors such as An. coluzzii Coetzee & Wilkerson is important, both because they cause cryptic population structure that can mislead vector analysis and control and because they influence epidemiologically relevant eco-phenotypes. The conventional cytogenetic method of genotyping is an impediment because it is labor intensive, requires specialized training, and can be applied only to one gender and developmental stage. Here, we circumvent these limitations by developing a simple and rapid molecular method of genotyping inversion 2Rc in An. coluzzii that is both economical and field-friendly. This inversion is strongly implicated in temporal and spatial adaptations to climatic and ecological variation, particularly aridity. Methods: Using a set of tag single-nucleotide polymorphisms (SNPs) strongly correlated with inversion orientation, we identified those that overlapped restriction enzyme recognition sites and developed four polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) assays that distinguish alternative allelic states at the tag SNPs. We assessed the performance of these assays using mosquito population samples from Burkina Faso that had been cytogenetically karyotyped as well as genotyped, using two complementary high-throughput molecular methods based on tag SNPs. Further validation was performed using mosquito population samples from additional West African (Benin, Mali, Senegal) and Central African (Cameroon) countries. Results: Of four assays tested, two were concordant with the 2Rc cytogenetic karyotype > 90% of the time in all samples. We recommend that these two assays be employed in tandem for reliable genotyping. By accepting only those genotypic assignments where both assays agree, > 99% of assignments are expected to be accurate. Conclusions: We have developed tandem PCR-RFLP assays for the accurate genotyping of inversion 2Rc in An. coluzzii. Because this approach is simple, inexpensive, and requires only basic molecular biology equipment, it is widely accessible. These provide a crucial tool for probing the molecular basis of eco-phenotypes relevant to malaria epidemiology and vector control. [Figure not available: see fulltext.

    Targeted Toxins in Brain Tumor Therapy

    Get PDF
    Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins

    Intracellular Trafficking Considerations in the Development of Natural Ligand-Drug Molecular Conjugates for Cancer

    Get PDF
    Overexpressed receptors, characteristic of many cancers, have been targeted by various researchers to achieve a more specific treatment for cancer. A common approach is to use the natural ligand for the overexpressed receptor as a cancer-targeting agent which can deliver a chemically or genetically conjugated toxic molecule. However, it has been found that the therapeutic efficacy of such ligand-drug molecular conjugates can be limited, since they naturally follow the intracellular trafficking pathways of the endogenous ligands. Therefore, a thorough understanding of the intracellular trafficking properties of these ligands can lead to novel design criteria for engineering ligands to be more effective drug carriers. This review presents a few commonly used ligand/receptor systems where intracellular trafficking considerations can potentially improve the therapeutic efficacy of the ligand-drug molecular conjugates

    NK cells and cancer: you can teach innate cells new tricks

    Full text link
    Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer

    CD133, Selectively Targeting the Root of Cancer

    No full text
    Cancer stem cells (CSC) are capable of promoting tumor initiation and self-renewal, two important hallmarks of carcinoma formation. This population comprises a small percentage of the tumor mass and is highly resistant to chemotherapy, causing the most difficult problem in the field of cancer research, drug refractory relapse. Many CSC markers have been reported. One of the most promising and perhaps least ubiquitous is CD133, a membrane-bound pentaspan glycoprotein that is frequently expressed on CSC. There is evidence that directly targeting CD133 with biological drugs might be the most effective way to eliminate CSC. We have investigated two entirely unrelated, but highly effective approaches for selectively targeting CD133. The first involves using a special anti-CD133 single chain variable fragment (scFv) to deliver a catalytic toxin. The second utilizes this same scFv to deliver components of the immune system. In this review, we discuss the development and current status of these CD133 associated biological agents. Together, they show exceptional promise by specific and efficient CSC elimination
    corecore