157 research outputs found

    Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic Acid, metabolism, and transitory starch accumulation

    No full text
    The aim of this work was to investigate the effect of decreased cytosolic phosphoenolpyruvate carboxykinase (PEPCK) and plastidic NADP-dependent malic enzyme (NADP-ME) on tomato (Solanum lycopersicum) ripening. Transgenic tomato plants with strongly reduced levels of PEPCK and plastidic NADP-ME were generated by RNA interference gene silencing under the control of a ripening-specific E8 promoter. While these genetic modifications had relatively little effect on the total fruit yield and size, they had strong effects in fruit metabolism. Both transformants were characterized by lower levels of starch at breaker stage. Analysis of the activation state of ADP-glucose pyrophosphorylase correlated with the decrease of starch in both transformats, which suggest that is due to an altered cellular redox status. Moreover, metabolic profiling and feeding experiments involving positional labelled glucoses of fruits lacking in plastidic NADP-malic enzyme and cytosolic PEPCK activities revealed differential changes in overall respiration rates and tricarboxylic acid (TCA) cycle flux. Inactivation of cytosolic PEPCK affected the respiration rate which suggests that excess of oxaloacetate OAA is converted to aspartate and reintroduced in the TCA via 2-oxoglutarate/glutamate. On the other hand, the plastidic NADP-malic enzyme antisense lines were characterized by no changes in respiration rates and TCA cycle flux and together with an increase of pyruvate kinase and phosphoenolpyruvate carboxylase activities indicates that pyruvate is supply through these enzymes to the TCA cycle. These results are discussed in the context of current models of the importance of malate during tomato fruit ripening

    Chemical Characterization and Source Apportionment of Household Fine Particulate Matter in Rural, Peri-urban, and Urban West Africa

    Get PDF
    Household air pollution in sub-Saharan Africa and other developing regions is an important cause of disease burden. Little is known about the chemical composition and sources of household air pollution in sub-Saharan Africa, and how they differ between rural and urban homes. We analyzed the chemical composition and sources of fine particles (PM2.5) in household cooking areas of multiple neighborhoods in Accra, Ghana, and in peri-urban (Banjul) and rural (Basse) areas in The Gambia. In Accra, biomass burning accounted for 39–62% of total PM2.5 mass in the cooking area in different neighborhoods; the absolute contributions were 10–45 μg/m3. Road dust and vehicle emissions comprised 12–33% of PM2.5 mass. Solid waste burning was also a significant contributor to household PM2.5 in a low-income neighborhood but not for those living in better-off areas. In Banjul and Basse, biomass burning was the single dominant source of cooking-area PM2.5, accounting for 74–87% of its total mass; the relative and absolute contributions of biomass smoke to PM2.5 mass were larger in households that used firewood than in those using charcoal, reaching as high as 463 μg/m3 in Basse homes that used firewood for cooking. Our findings demonstrate the need for policies that enhance access to cleaner fuels in both rural and urban areas, and for controlling traffic emissions in cities in sub-Saharan Africa

    Hardy Spaces on Weighted Homogeneous Trees

    Get PDF
    We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy spaces does not apply in this setting. We construct an atomic Hardy space H1(μ) on (V, d, μ) and investigate some of its properties, focusing in particular on real interpolation properties and on boundedness of singular integrals on H1(μ)

    FaRIF Transcription Factor Plays a Key Role in the Regulation of Fruit Ripening in the Cultivated Strawberry Fragaria x ananassa

    Get PDF
    Strawberry is becoming a model for studying the molecular mechanism of ripening in non-climacteric fruits. However, a limited number of transcriptional regulators of this process have been identified so far. In this study, we have identified and characterized a gene encoding for a NAC transcription factor (TF), named as FaRIF (Ripening Inducing Factor). FaRIF expression presents a fruit-specific pattern, which is upregulated during ripening. In order to functionally characterize this TF, we have generated silencing (35S::RIF-RNAi) and overexpressing (35S::RIF-GFP) stable transgenic lines. While the RNAi lines showed an apparent delay of fruit ripening, the overexpressing lines displayed an acceleration of this process. Transcriptomic analysis, by RNA-seq, of the silenced lines showed a significantly altered expression of genes involved in the flavonoids pathway, as well as genes of the metabolism of the main sugars of the fruit. Metabolomics analysis confirmed these changes in the transgenic fruits. Both, transcriptomic and metabolomics data, were in agreement with the general phenotype observed in the fruits of the FaRIF-silenced lines. All together, our results support a main role of FaRIF in the control of relevant ripening-associated processes in strawberry fruit.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Spatial-temporal patterns of ambient fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra

    Get PDF
    Background: Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major environmental health concern in SSA cities. Yet, effective air quality management is hindered by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement campaign and characterized within-city variations in fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra, Ghana. Methods: Between April 2019 and June 2020, we measured weekly gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations, comprising of 10 fixed (~1-year) and 136 rotating (7-day) sites covering a range of land-use and source influences. Filters were weighed for mass, and light absorbance (10−5m−1) of the filters was used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a previous study (2006-2007) were compared to assess change in PM2.5 concentrations. Results: The mean annual PM2.5 across the fixed sites ranged from 26 μg/m3 at a peri-urban site to 40 μg/m3 at commercial, business, and industrial (CBI) areas. CBI areas had the highest PM2.5 levels (mean: 37 μg/m3), followed by high-density residential neighborhoods (mean: 36 μg/m3), while peri-urban areas recorded the lowest (mean: 26 μg/m3). Both PM2.5 and BC levels were highest during the dry dusty Harmattan period (mean PM2.5: 89 μg/m3) compared to non-Harmattan season (mean PM2.5: 23 μg/m3). PM2.5 at all sites peaked at dawn and dusk, coinciding with morning and evening heavy traffic. We found about a ~50% reduction (71 vs 37 μg/m3) in mean annual PM2.5 concentrations when compared to measurements in 2006-2007 in Accra. Conclusion: Ambient PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and equitable policies are needed to reduce pollution levels and protect public health

    Ethylene is involved in strawberry fruit ripening in an organ-specific manner

    Get PDF
    The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of ethylene during strawberry fruit ripening.Facultad de Ciencias ExactasInstituto de Fisiología Vegeta

    The NAC transcription factor FaRIF is a key regulator of fruit ripening in strawberry

    Get PDF
    In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a non-climacteric fruit, is still limited. NAC transcription factors are proteins that mediate different developmental processes in plants. In this work, we have identified and characterized FaRIF (Ripening Inducing Factor), a novel NAC transcription factor which is highly expressed and induced in strawberry receptacles during ripening. Functional analysis establishing stable transgenic lines with RNAi, driven by either the constitutive 35S or the ripe receptacle-specific EXP2 promoters, and overexpression constructs showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugars accumulation. Physiological, metabolomic and transcriptomic analyses of receptacles of FaRIFsilenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling ABA biosynthesis and signaling, cell wall degradation and modification, the phenylpropanoid pathway, and the balance of the aerobic/anaerobic metabolism, being therefore a target to be modified/edited to control the quality of strawberry fruits.ERC Starting Grant ERC-2014-StG 63813

    Identification and characterization of the NAC transcription factor FaRIF, a key regulator of strawberry fruit ripening

    Get PDF
    Strawberry is becoming a model for studying the molecular mechanism of ripening in non-climacteric fruits. However, a limited number of transcriptional regulators of this process have been identified so far. In this study, we have identified and characterized a gene encoding for a NAC transcription factor (TF), named as FaRIF (Ripening Inducing Factor). FaRIF expression presents a fruit-specific pattern, which is upregulated during ripening. In order to functionally characterize this TF, we have generated silencing and overexpressing stable transgenic lines. While the RNAi lines showed an apparent delay of fruit ripening, the overexpressing lines displayed an acceleration of this process. Transcriptomic analysis of the silenced lines showed a significantly altered expression of genes involved in development, hormone metabolism, flavonoid pathway, and cell-wall disassembly, being many of these confirmed by phenotypical and metabolomics analysis. Our results support a main role of FaRIF in the control of relevant ripening-associated processes in strawberry fruit

    Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits.

    Get PDF
    This work aims to determine the effect of genotype x environment (GxE) interaction that influence blackcurrant (Ribes nigrum) fruit quality. We applied metabolomics-driven analysis on fruits from four cultivars grown in contrasting European-locations over two seasons. By integrating metabolomics and sensory analysis, we also defined specific metabolic signatures associated with consumer acceptance. Our results showed that rainfall is a crucial factor associated with accumulation of delphinidin- and cyanidin-3-O-glucoside, the two mayor blackcurrant pigments meanwhile temperature affects the main organic acid levels which can be decisive for fruit taste. Sensorial analysis showed that increases in terpenoid and acetate ester volatiles were strongly associated with higher appreciation score, while proacacipetalin, a cyanogenic-glycoside, was positively associated to bitter taste. Our results pave the way for the selection of high-quality cultivars and suitable production sites for blackcurrant cultivation.publishedVersio

    Characterizing the involvement of FaMADS9 in the regulation of strawberry fruit receptacle development

    Get PDF
    FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes
    • …
    corecore