14 research outputs found

    Nordic LifeWatch cooperation, final report: A joint initiative from Denmark, Iceland, Finland, Norway and Sweden

    Get PDF
    The main goal of the present report is to outline the possibilities for an enhanced cooperation between the Nordic countries within eScience and biodiversity. LifeWatch is one of several ESFRI projects which aim to establish eInfrastructures and databases in the field of biodiversity and ecosystem research. Similarities between Nordic countries are extensive in relation to a number of biodiversity related issues. Most species in Nordic countries are common, and frequently the same challenges concerning biodiversity and ecosystem services are addressed in the different countries. The present report has been developed by establishing a Nordic LifeWatch network with delegates from each of the Nordic countries. The report has been written jointly by the delegates, and the work was organized by establishing working groups with the following themes: strategic issues, technical development, legal framework and communication. Written during two workshops, Skype meetings and emailing, the following main issues are discussed in the present report: * Scientific needs for improved access to biodiversity data and advanced eScience research infrastructure in the Nordic countries. * Future challenges and priorities facing the international biodiversity research community. * Scientific potential of openly accessible biodiversity and environmental data for individual researchers and institutions. * Spin-off effects of open access for the general public. * Internationally standardized Nordic metadata inventory. * Legal framework and challenges associated with environmental-, climate-, and biodiversity data sharing, communication, training and scientific needs. * Finally, some strategic steps towards realizing a Nordic LifeWatch construction and operational phase are discussed. Easy access to open data on biodiversity and the environment is crucial for many researchers and research institutions, as well as environmental administration. Easy access to data from different fields of science creates an environment for new scientific ideas to emerge. This potential of generating new, interdisciplinary approaches to pre-existing problems is one of the key features of open-access data platforms that unify diverse data sources. Interdisciplinary elements, access to data over larger gradients, compatible eSystems and eTools to handle large amounts of data are extremely important and, if further developed, represent significant steps towards analysis of biological effects of climate change, human impact and development of operational ecosystem service assessment techniques. It is concluded that significant benefits regarding both scientific potential, technical developments and financial investments can be obtained by constructing a common Nordic LifeWatch eInfrastructure. Several steps concerning organizing and funding of a future Nordic LifeWatch are discussed, and an action plan towards 2020 is suggested. To analyze the potential for future Nordic LifeWatch in detail, our main conclusion is to arrange a Nordic LifeWatch conference as soon as possible. This conference should involve Nordic research councils, scientists and relevant stakeholders. The national delegates from the participating countries in the Nordic LifeWatch project are prepared to present details from the report and developments so far as a basis for further development of Nordic LifeWatch. The present work is financed by NordForsk and in-kind contributions from participating institutions

    Residual Corticosteroid Production in Autoimmune Addison Disease

    Get PDF
    Context - Contrary to current dogma, growing evidence suggests that some patients with autoimmune Addison disease (AAD) produce corticosteroids even years after diagnosis. Objective - To determine frequencies and clinical features of residual corticosteroid production in patients with AAD. Design - Two-staged, cross-sectional clinical study in 17 centers (Norway, Sweden, and Germany). Residual glucocorticoid (GC) production was defined as quantifiable serum cortisol and 11-deoxycortisol and residual mineralocorticoid (MC) production as quantifiable serum aldosterone and corticosterone after > 18 hours of medication fasting. Corticosteroids were analyzed by liquid chromatography–tandem mass spectrometry. Clinical variables included frequency of adrenal crises and quality of life. Peak cortisol response was evaluated by a standard 250 µg cosyntropin test. Results - Fifty-eight (30.2%) of 192 patients had residual GC production, more common in men (n = 33; P P P P P P P  Conclusion - In established AAD, one-third of the patients still produce GCs even decades after diagnosis. Residual production is more common in men and in patients with shorter disease duration but is not associated with adrenal crises or quality of life

    Altered biomarkers for cardiovascular disease and inflammation in autoimmune Addison's disease - a cross-sectional study

    Get PDF
    Objective - Increased prevalence of cardiovascular disease has been reported in autoimmune Addison's disease (AAD), but pathomechanisms are poorly understood. Methods - We compared serum levels of 177 cardiovascular and inflammatory biomarkers in 43 patients with AAD at >18-h glucocorticoid withdrawal and 43 matched controls, overall and stratified for sex. Biomarker levels were correlated with the frequency of adrenal crises and quality of life (QoL) by AddiQoL-30. Finally, we investigated changes in biomarker levels following 250 µg tetracosactide injection in patients without residual adrenocortical function (RAF) to explore glucocorticoid-independent effects of high ACTH. Results - Nineteen biomarkers significantly differed between patients with AAD and controls; all but 1 (ST1A1) were higher in AAD. Eight biomarkers were significantly higher in female patients compared with controls (IL6, MCP1, GAL9, SPON2, DR4, RAGE, TNFRSF9, and PGF), but none differed between male patients and controls. Levels of RAGE correlated with the frequency of adrenal crises (r = 0.415, P = .006) and AddiQoL-30 scores (r = −0.347, P = .028) but not after correction for multiple testing. PDL2 and leptin significantly declined 60 min after injection of ACTH in AAD without RAF (−0.15 normalized protein expression [NPX], P = .0001, and −0.25 NPX, P = .0003, respectively). Conclusions - We show that cardiovascular and inflammatory biomarkers are altered in AAD compared with controls, particularly in women. RAGE might be a marker of disease severity in AAD, associated with more adrenal crises and reduced QoL. High ACTH reduced PDL2 and leptin levels in a glucocorticoid-independent manner but the overall effect on biomarker profiles was small

    Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to serve as a Transition Fuel

    Get PDF
    Current Greenhous gas emissions (GHG) from maritime transport represent around 3% of global anthropogenic GHG emissions and will have to be cut in half by 2050 to meet Paris agreement goals. Liquefied natural gas (LNG) is by many seen as a potential transition fuel for decarbonizing shipping. Its favorable hydrogen to carbon ratio compared to diesel (marine gas oil, MGO) or bunker fuel (heavy fuel oil, HFO) translates directly into lower carbon emissions per kilowatt produced. However, these gains may be nullified once one includes the higher Well-to-tank emissions (WTT) of the LNG supply chain and the vessel’s un-combusted methane slip (CH4) from its combustion engine. Previous studies have tended to focus either on greenhouse gas emissions from LNG in a Well-to-wake (WTW) perspective, or on alternative engine technologies and their impact on the vessel’s Tank-to-wake emissions (TTW). This study investigates under what conditions LNG can serve as a transition fuel in the decarbonization of maritime transport, while ensuring the lowest possible additional global warming impact. Transition refers to the process of moving away from fossil fuels towards new and low carbon fuels and engine technologies. Our results show: First, the importance of applying appropriate engine technologies to maximize GHG reductions; Second, that applying best engine technologies is not economically profitable; Third, how regulations could be amended to reward best engine technologies. Importantly, while the GHG reduction of LNG even with best engine technology (dual fuel diesel engine) are limited, ships with these engines can with economically modest modification switch to ammonia produced with renewable energy when it becomes available in sufficient amounts.This study has been financially supported by the Norwegian Research Council project (Norges Forskningsråd) SFI Smart Maritime project number 237917.publishedVersio

    Failure intensity of offshore power plants under varying maintenance policies

    Get PDF
    System reliability of an offshore power plant with several gas turbine engines is analyzed in this study to understand the failure intensity of a selected gas turbine engines under varying maintenance activities. A set of event data of a selected gas turbine engine is considered to identify system failure intensity levels, where unknown maintenance actions were implemented (i.e. various repairs disturb the failure rate). A non-homogeneous Poisson process (NHPP) is used to model the age dependent failure intensity of the same gas turbine engine and the maximum likelihood estimation (MLE) approach for calculating the respective model parameters is proposed. Several failure intensity rates (i.e. varying failure trends) in these models (i.e. during the system age of the gas turbine engine) are observed. Furthermore, these varying failure trend models are evaluated with actual failure events of the same gas turbine engine by considering two goodness-of-fit tests: Cramer-von Mises and Chi-square tests. Finally, system reliability of the gas turbine engine under the failure transition, failure intensity, mission reliability and mean time between failures (MTBF) is also discussed in this study

    Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to serve as a Transition Fuel

    No full text
    Current Greenhous gas emissions (GHG) from maritime transport represent around 3% of global anthropogenic GHG emissions and will have to be cut in half by 2050 to meet Paris agreement goals. Liquefied natural gas (LNG) is by many seen as a potential transition fuel for decarbonizing shipping. Its favorable hydrogen to carbon ratio compared to diesel (marine gas oil, MGO) or bunker fuel (heavy fuel oil, HFO) translates directly into lower carbon emissions per kilowatt produced. However, these gains may be nullified once one includes the higher Well-to-tank emissions (WTT) of the LNG supply chain and the vessel’s un-combusted methane slip (CH4) from its combustion engine. Previous studies have tended to focus either on greenhouse gas emissions from LNG in a Well-to-wake (WTW) perspective, or on alternative engine technologies and their impact on the vessel’s Tank-to-wake emissions (TTW). This study investigates under what conditions LNG can serve as a transition fuel in the decarbonization of maritime transport, while ensuring the lowest possible additional global warming impact. Transition refers to the process of moving away from fossil fuels towards new and low carbon fuels and engine technologies. Our results show: First, the importance of applying appropriate engine technologies to maximize GHG reductions; Second, that applying best engine technologies is not economically profitable; Third, how regulations could be amended to reward best engine technologies. Importantly, while the GHG reduction of LNG even with best engine technology (dual fuel diesel engine) are limited, ships with these engines can with economically modest modification switch to ammonia produced with renewable energy when it becomes available in sufficient amounts

    Reduction of maritime GHG emissions and the potential role of E-fuels

    Get PDF
    Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.publishedVersio

    Reduction of maritime GHG emissions and the potential role of E-fuels

    No full text
    Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity

    Reduction of maritime GHG emissions and the potential role of E-fuels

    Get PDF
    Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity
    corecore