98 research outputs found

    Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition

    Get PDF
    Review[Abstract] Epithelial-to-mesenchymal transition (EMT), one of the crucial steps for carcinoma cells to acquire invasive capacity, results from the disruption of cell–cell contacts and the acquisition of a motile mesenchymal phenotype. Although the transcriptional events controlling EMT have been extensively studied, in recent years, several posttranscriptional mechanisms have emerged as critical in the regulation of EMT during tumor progression. In this review, we highlight the regulation of posttranscriptional events in EMT by RNA-binding proteins (RBPs). RBPs are responsible for controlling pre-mRNA splicing, capping, and polyadenylation, as well as mRNA export, turnover, localization, and translation. We discuss the most relevant aspects of RBPs controlling the metabolism of EMT-related mRNAs, and describe the implication of novel posttranscriptional mechanisms regulating EMT in response to different signaling pathways. Novel insight into posttranscriptional regulation of EMT by RBPs is uncovering new therapeutic targets in cancer invasion and metastasis.Xunta de Galicia; 10CSA916023PRXunta de Galicia; REGICC, CN2012/21

    Multiple biomarker tissue arrays: a computational approach to identifying protein-protein interactions in the EGFR/ERK signalling pathway

    Get PDF
    [Abstract] Background. Many studies have demonstrated genetic and environmental factors that lead to renal cell carcinoma (RCC) and that occur during a protracted period of tumourigenesis. It appears suitable to identify and characterise potential molecular markers that appear during tumourigenesis and that might provide rapid and effective possibilities for the early detection of RCC. EGFR activation induces cell cycle progression, inhibition of apoptosis and angiogenesis, promotion of invasion/metastasis, and other tumour promoting activities. Over-expression of EGFR is thought to play an important role in tumour initiation and progression of RCC because up-regulation of EGFR has been associated with high grade cancers and a worse prognosis. Methods. Characterisation of the protein profile interacting with EGFR was performed using the following: an immunohistochemical (IHC) study of EGFR, a comprehensive computational study of EGFR protein-protein interactions, an analysis correlating the expression levels of EGFR with other significant markers in the tumourigenicity of RCC, and finally, an analysis of the utility of EGFR for prognosis in a cohort of patients with renal cell carcinoma. Results. The cases that showed a higher level of this protein fell within the clear cell histological subtype (p = 0.001). The EGFR significance statistic was found with respect to a worse prognosis. In vivo significant correlations were found with PDGFR-β, Flk-1, Hif1-α, proteins related to differentiation (such as DLL3 and DLL4 ligands), and certain metabolic proteins such as Glut5. In silico significant associations gave us a panel of 32 EGFR-interacting proteins (EIP) using the APID and STRING databases. Conclusions. This work summarises the multifaceted role of EGFR in the pathology of RCC, and it identifies EIPs that could help to provide mechanistic explanations for the different behaviours observed in tumours

    Clinical implications of epithelial cell plasticity in cancer progression

    Get PDF
    Mini-review[Abstract] In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients.Instituto de Salud Carlos III; PI13/00250Xunta de Galicia; 10CSA916023PRXunta de Galicia; PS09/2

    Origin of renal cell carcinomas

    Get PDF
    [Abstract] Cancer is a heritable disorder of somatic cells: environment and heredity are both important in the carcinogenic process. The primal force is the “two hits” of Knudson’s hypothesis, which has proved true for many tumours, including renal cell carcinoma. Knudson et al. [1, 2] recognised that familial forms of cancer might hold the key to the identification of important regulatory elements known as tumour-suppressor genes. Their observations (i.e., that retinoblastoma tend to be multifocal in familial cases and unifocal in sporadic presentation) led them to propose a two-hit theory of carcinogenesis. Furthermore, Knudson postulated that patients with the familial form of the cancer would be born with one mutant allele and that all cells in that organ or tissue would be at risk, accounting for early onset and the multifocal nature of the disease. In contrast, sporadic tumours would develop only if a mutation occurred in both alleles within the same cell, and, as each event would be expected to occur with low frequency, most tumours would develop late in life and in a unifocal manner [3, 4]. The kidney is affected in a variety of inherited cancer syndromes. For most of them, both the oncogene/tumour-suppressor gene involved and the respective germline mutations have been identified. Each of the inherited syndromes predisposes to distinct types of renal carcinoma. Families with hereditary predisposition to cancer continue to provide a unique opportunity for the identification and characterisation of genes involved in carcinogenesis. A surprising number of genetic syndromes predispose to the development of renal cell carcinoma, and genes associated with five of these syndromes have been already identified: VHL, MET, FH, BHD and HRPT2. Few cancers have as many different types of genetic predisposition as renal cancer, although to date only a small proportion of renal cell cancers can be explained by genetic predisposition

    New insights into molecular mechanisms of sunitinib-associated side effects

    Get PDF
    Review[Abstract] The introduction of targeted therapy represents a major advance in the treatment of tumor progression. Targeted agents are a novel therapeutic approach developed to disrupt different cellular signaling pathways. The tyrosine kinase inhibitor sunitinib specifically blocks multiple tyrosine kinase receptors that are involved in the progression of many tumors. Sunitinib is the current standard of care in first-line treatment of advanced renal cell carcinoma, and it is approved in imatinib-intolerant and imatinib-refractory gastrointestinal stromal tumors. However, it is increasingly evident that sunitinib may display collateral effects on other proteins beyond its main target receptors, eliciting undesirable and unexpected adverse events. A better understanding of the molecular mechanisms underlying these undesirable sunitinib-associated side effects will help physicians to maximize efficacy of sunitinib and minimize adverse events. Here, we focus on new insights into molecular mechanisms that may mediate sunitinib-associated adverse events

    Evaluation of COX-2, EGFR, and p53 as biomarkers of non-dysplastic oral leukoplakias

    Get PDF
    [Abstract] Objective. Identify candidate SEBs (surrogate endpoint biomarkers) for premalignant trends in head and neck mucosa. Study design. Study, by qPCR (quantitative real-time polymerase chain reaction), the expression of COX-2, EGFR and p53 in 24 biopsies of non-dysplastic oral leukoplakia and contra-lateral normal-appearing mucosa. Results. COX-2 was up-regulated in leukoplakia (79.2%); whereas EGFR and p53 were up-regulated (p > 0.05) in oral contra-lateral normal-appearing mucosa (60% and 46% respectively). Also, p53 expression was correlated with tobacco smoke habits and Spearman's rank correlation coefficient showed a positive linear correlation between p53 and EGFR mRNA expression levels. Conclusions. COX-2 would serve as SEB of oral leukoplakia. The results suggest that p53 appears to be one of the molecular targets of tobacco-related carcinogens in leukoplakia and that the co-expression of p53 and EGFR may play a role in this kind of oral pre-cancerous lesion. More detailed studies of EGFR and p53 should be continued in the future

    miR-203 regulates cell proliferation through Its influence on Hakai expression

    Get PDF
    Gene expression is potently regulated through the action of microRNAs (miRNAs). Here, we present evidence of a miRNA regulating Hakai protein. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells and a potent tumour suppressor. Recent data have provided evidence that Hakai affects cell proliferation in an E-cadherin-independent manner, thus revealing a role for Hakai in the early stages of tumour progression. Furthermore, Hakai is highly up-regulated in human colon adenocarcinomas compared to normal tissues. However, the molecular mechanisms that regulate Hakai abundance are unknown. We identified two putative sites of miR-203 interaction on the Hakai mRNA, in its 3′-untranslated region (UTR). In several human carcinoma cell lines tested, overexpression of a miR-203 precursor (Pre-miR-203) reduced Hakai abundance, while inhibiting miR-203 by using an antisense RNA (Anti-miR-203) elevated Hakai levels. The repressive influence of miR-203 on the Hakai 3′-UTR was confirmed using heterologous reporter constructs. In keeping with Hakai's proliferative influence, Anti-miR-203 significantly increased cell number and BrdU incorporation, while Pre-miR-203 reduced these parameters. Importantly, the growth-promoting effects of anti-miR-203 required the presence of Hakai, because downregulation of Hakai by siRNA suppressed its proliferative action. Finally, in situ hybridization showed that miR-203 expression is attenuated in colon tumour tissues compared to normal colon tissues, suggesting that miR-203 could be a potential new prognostic marker and therapeutic target to explore in colon cancer. In conclusion, our findings reveal, for the first time, a post-transcriptional regulator of Hakai expression. Furthermore, by lowering Hakai abundance, miR-203 also reduces Hakai-regulated-cell division.Xunta de Galicia; 10CSA916023PRInstituto de Salud Carlos III; CA09/00116Xunta de Galicia; IPP.08-0

    Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    Get PDF
    Background: Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods: Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results: We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions: Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis
    corecore