154 research outputs found

    Influence of the Carotenoid Composition on the Conformational Dynamics of Photosynthetic Light-Harvesting Complexes

    Get PDF
    Nonphotochemical quenching (NPQ) is the major self-regulatory mechanism of green plants, performed on a molecular level to protect them from an overexcitation during the direct sunlight. It is believed that NPQ becomes available due to conformational dynamics of the light-harvesting photosynthetic complexes and involves a direct participation of carotenoids. In this work, we perform a single-molecule microscopy on major light-harvesting complexes (LHCII) from different Arabidopsis thaliana mutants exhibiting various carotenoid composition. We show how the distinct carotenoids affect the dynamics of the conformational switching between multiple coexisting light-emitting states of LHCII and demonstrate that properties of the quenched conformation are not influenced by the particular carotenoids available in LHCII. We also discuss the possible origin of different conformational states and relate them to the fluorescence decay kinetics observed during the bulk measurements

    Direct generation of optical vortices

    Get PDF
    A detailed scheme is established for the direct generation of optical vortices, signifying light endowed with orbital angular momentum. In contrast to common techniques based on the tailored conversion of the wave front in a conventional beam, this method provides for the direct spontaneous emission of photons with the requisite field structure. This form of optical emission results directly from the electronic relaxation of a delocalized exciton state that is supported by a ringlike array of three or more nanoscale chromophores. An analysis of the conditions leads to a general formulation revealing a requirement for the array structure to adhere to one of a restricted set of permissible symmetry groups. It is shown that the coupling between chromophores within each array leads to an energy level splitting of the exciton structure, thus providing for a specific linking of exciton phase and emission wavelength. For emission, arrays conforming to one of the given point-group families’ doubly degenerate excitons exhibit the specific phase characteristics necessary to support vortex emission. The highest order of exciton symmetry, corresponding to the maximum magnitude of electronic orbital angular momentum supported by the ring, provides for the most favored emission. The phase properties of the emission produced by the relaxation of such excitons are exhibited on plots which reveal the azimuthal phase progression around the ring, consistent with vortex emission. It is proven that emission of this kind produces electromagnetic fields that map with complete fidelity onto the phase structure of a Laguerre-Gaussian optical mode with the corresponding topological charge. The prospect of direct generation paves the way for practicable devices that need no longer rely on the modification of a conventional laser beam by a secondary optical element. Moreover, these principles hold promise for the development of a vortex laser, also based on nanoscale exciton decay, enabling the production of coherent radiation with a tailor-made helical wave front

    Excitation Dynamics and Relaxation in a Molecular Heterodimer

    Full text link
    The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the energy gap of the molecular excitation, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer

    Quantum dissipative systems beyond the standard harmonic model: Features of linear absorption and dynamics

    Get PDF
    Current simulations of ultraviolet-visible absorption lineshapes and dynamics of condensed phase systems largely adopt a harmonic description to model vibrations. Often, this involves a model of displaced harmonic oscillators that have the same curvature. Although convenient, for many realistic molecular systems, this approximation no longer suffices. We elucidate nonstandard harmonic and anharmonic effects on linear absorption and dynamics using a stochastic Schrödinger equation approach to account for the environment. First, a harmonic oscillator model with ground and excited potentials that differ in curvature is utilized. Using this model, it is shown that curvature difference gives rise to an additional substructure in the vibronic progression of absorption spectra. This effect is explained and subsequently quantified via a derived expression for the Franck-Condon coefficients. Subsequently, anharmonic features in dissipative systems are studied, using a Morse potential and parameters that correspond to the diatomic molecule H2 for differing displacements and environment interaction. Finally, using a model potential, the population dynamics and absorption spectra for the stiff-stilbene photoswitch are presented and features are explained by a combination of curvature difference and anharmonicity in the form of potential energy barriers on the excited potential

    Femtosecond Four-Wave Mixing Spectroscopy of Molecular Aggregates

    No full text

    Electrical-to-mechanical coupling in purple membranes: membrane as electrostrictive medium.

    Get PDF
    In this paper, we present acousto-electrical measurements performed on dry films of purple membranes (PM) of Halobacterium salinarium. The purpose of these measurements is to determine the relation between mechanical and electrical phenomena in bacteriorhodopsin and to define the role of the protein in the proton transfer process. Electrical-to-mechanical coupling in PMs manifests itself as direct and inverse piezoelectric effects. Measurements performed on the samples with different degrees of PM orientation and at various values of the externally applied cross-membrane electric field indicate that piezoelectric phenomena in PMs arise from the electric asymmetry of the membranes, i.e., they originate from electrostriction. Experiments with samples made of oriented PMs allow estimation of the value of the intrinsic cross-membrane electric field, which is approximately 10(8) V/m. A hypothetical model of PM is presented where the electrical-to-mechanical coupling is suggested to be the main driving force for the proton translocation against the Coulomb forces acting in the membrane
    corecore