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Excitons in circular aggregates of dimers are discussed with the aim to understand the possible spectral and
energy transfer properties of the ringlike peripheral complexes of photosynthetic bacteria. The system is
explicitly heterogeneous (i.e., the difference in transition energies of the molecules within the dimer as, well
as the difference in the intra- and interdimer resonance interactions, is accounted for). It is demonstrated that
the energy spectrum of such a system exhibits many of the features as observed in spectrally inhomogeneous
circular aggregates. The model is used to illustrate the changes in absorption and circular dichroism spectra
that take place upon incorporating a dimer into a circular chain. The exciton dynamics in the aggregate is
considered in the Haken-Strobl-Reineker approach. When terms are neglected describing the phase relaxation
between nonnearest neighbors, the equations for the diagonal density matrix elements are obtained containing
both coherent exciton motion within the dimersthe building block of the aggregatesand an incoherent hopping
of the excitation between dimers. It is demonstrated that these equations contain a wavelike soliton solution
(if dephasing is absent) as well as a diffusion-like solution (for large dephasing rates).

Introduction

The initial event in photosynthesis is the absorption of light
by the light-harvesting antenna (LHA), which is followed by a
rapid and efficient transfer of the absorbed energy to the reaction
center (RC), where charge separation is initiated.1 The crystal
structures of the peripheral light-harvesting antenna complexes
(LH2) of the photosynthetic bacteriaRhodopseudomonas (Rps.)
acidophila2,3 and Rhodospirillum (Rh.) molischianum4 have
shown their ringlike organization. A similar ringlike structure
is also present in the core light-harvesting complex LH1.5 Both
these structures elegantly demonstrate how in such a ring a
bacteriochlorophyll (Bchl) oligomer is organized using two
spatial scaling parameters. The presence of two nonequivalent
binding sites for adjacent pigment molecules in the aggregate,
dictated by the two proteins involved, introduces two charac-
teristic distances and orientational factors.
So far, the theoretical consideration of ringlike molecular

aggregates has been concentrated on the analysis of aggregates
with one scaling parameters, or in other words, on aggregates
with only one molecule per unit cell.6,7 On the other hand, a
numerical analysis of the spectral properties of the ringlike
molecular aggregate was also carried out8 by using the X-ray
structural data of theRp. acidophilaLH2. In addition, the
spectral inhomogeneity of the molecules in the aggregate has
been considered.9 However, the presence of two scaling
parameters in the system (aggregates with two molecules per
unit cell) provides additional degrees of freedom in modeling
absorption and circular dichroism (CD) spectra. Similarly, the
excitation transfer dynamics will depend on the two scaling
parameters, a fact that until now has not been explicitly
considered.22 Thus, the aim of this work is to describe the
spectroscopy and excitation dynamics in these ringlike molecular
aggregates with two molecules per unit cell and to discuss the
applicability of this approach for bacterial light-harvesting
complexes LH2/1. It is worth mentioning that this model, in

which we assume that the two molecules in the unit cell are
characterized by different transition energies, already exhibits
the basic features of spectrally inhomogeneous systems, while
all the results can be obtained analytically. In our modeling
two limiting cases can be distinguished. In the first case, for
which the intermolecular distance within the unit cell is much
smaller than the distance between molecules from a neighboring
unit cells, we have the system of weakly interacting asymmetric
dimers. In the second case, the difference between the transition
energies of the molecules within the same unit cell dominates,
corresponding to an extremely large value for the Davydov
splitting.10

Exciton Spectrum

The spectrum of a molecular aggregate is determined by
solving the stationary Schro¨dinger equation. Due to the weak
intermolecular interactions, the Heitler-London approximation
can be used,10 which means that these weak intermolecular
interactions can be considered as a perturbation of the energy
spectrum, while the eigenfunctions of the aggregate in first order
are given by linear combinations of the product of the molecular
eigenfunctions. At first let us neglect the interaction of the
electronic excitation with intermolecular vibrations/phonons, by
assuming that all molecules have fixed positions. The Hamil-
tonianH of the molecular aggregate in this approximation is
then as follows10:

wheren andm run over theN unit cells in the aggregate andR
andâ enumerate the position of the molecule within the unit
cell. ∆nR is the site energy of thenth molecule andVnR,mâ is the
interaction (transfer integral) between moleculesnR andmâ,
b†nR, bnR are creation, annihilation operators for excitation of
the corresponding molecule. The eigenfunctions of a separate
excited moleculenR are described by* Corresponding author.
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where |0〉 is the eigenfunction of the aggregate ground state.
Due to translation symmetry according to the Bloch theorem
we haveVnR,mâ ) VRâ(n - m).
The HamiltonianH can easily be diagonalized by a trans-

formation to the quasi momentum representation with the new
set of creation and annihilation operators

wherek is the wave vectork )
2π
N
j, -

N
2

< j e
N
2
and ν

accounts for the splitting of degenerate molecular states intoσ
molecular subbands (σ is the number of molecules per unit cell).
Substituting eqs 3 into the Schro¨dinger equation leads to a set
of σ equations for the elements of the matrixu(k)

where

Since the transformation coefficients are normalized, we have

Thus, the excited state spectra are determined via the corre-
sponding characteristic equation

Matrix 5 is Hermitian, thus allσ values ofEν(k) are real. These
Eν(k) determineσ exciton subbands and this phenomenon is
known as Davydov splitting.
Let us now consider a linear (cyclic) molecular aggregate

with two molecules per unit cell assuming that the distance
parameterb determines the intermolecular distance within the
unit cell anda is the intermolecular scaling parameter between
the neighboring cells (see Figure 1). The diagonalizaton
procedure 3 now yields the following analytical solution for
the energiesEν(k):

In the case of the “nearest neighbor” approximation, in which
only interactions between neighboring chromophores are con-
sidered, we have

whereVa,b determine the corresponding matrix elements for

resonance interactions. A variation in the value of the molecular
site displacement energy, measured by∆1 - ∆2 and inherent
to our definition of the unit cell, is responsible for the
heterogeneous broadening of the spectra.
Furthermore, in such a dimerized aggregate the different value

of the two spatial scaling parametersb anda (with b < a) is
taken to be responsible for the difference in resonance interaction
(Vb > Va). Alternatively, the value of the orientation parameter
may vary. For such a chain of dimers eq 8 then immediately
leads to a splitting of the exciton band into two Davydov
subbands, which are separated by 2(Vb - Va), even in the
absence of heterogeneity of the two molecules in the unit cell
(i.e., for∆1 ) ∆2). The dimerization also leads to a narrowing
of the exciton band, i.e. the bandwidth changes from4Vb for
the aggregate with a single molecule per unit cell to 2(Vb -
Va) for the chain of dimers (see Figure 2). Introducing
heterogeneity for the unit cell (∆1 * ∆2) changes the total
bandwidth, which becomes equal to 2[((∆1 - ∆2)/2)2 + (Vb +
Va)2]1/2 and increases the size of the energy gap between theVb
+ Va Davydov subbands to 2[((∆1 - ∆2)/2)2 + (Vb - Va)2]1/2.
Thus, even for equal intermolecular distances and equivalent
orientations (i.e. atVa ) Vb) the exciton band is also disturbed.
In that case the exciton bandwidth is 2[((∆1 - ∆2)/2)2 + 4Va2]1/2

and the gap in the energy level diagram, which separates the
Davydov subbands, equals|∆1 - ∆2| (see Figure 3).

Figure 1. Schematic representation of the dimerized molecular
aggregate characterized by two scaling intermolecular distances:a and
b.
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Figure 2. Exciton bands for an aggregate with a single molecule per
unit cell (a) and for a homogeneous aggregate with two molecules per
unit cell (b). The black lines show the edges of the bands; the
unperturbed energy is represented by the dashed line in the center of
the band.

Figure 3. Exciton subbands for molecular aggregates with two
heterogeneous molecules per unit cell. The black lines show the edges
of the bands; the unperturbed energy is represented by the dashed line
in the center of the band. (a) corresponds to the case of equal resonance
interactions, thus,E4 - E1 ) 2[(∆1 - ∆2)/2)2 + 4Va2)1/2 while b)
corresponds to the case of large heterogeneity in unit cell, orE4 - E1
) ∆1 - ∆2 + 2(Vb + Va)2/(∆1 - ∆2) andE3 - E2 ) ∆1 - ∆2 + 2(Vb
- Va)2/(∆1 - ∆2).
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We note that in the limiting case of a very large intermolecular
distance between the cells (i.e., whena . b (or Va ≈ 0) eq 8
gives the well-known result for the energy spectrum of the dimer
with inequivalent site energies. Thus, we conclude that a
difference in the resonance interaction between molecules within
a unit cell and between the molecules from different unit cells
alters the exciton bandwidth and creates a gap between the
Davydov subbands in the center of the total exciton band. A
very similar effect can be obtained by assuming the molecules
in the unit cell to be energetically heterogeneous. The spectral
density of statesF(ε) for an aggregate with mutually parallel
dipole moments and cyclic boundary conditions reads11

whereImAmeans the imaginary part ofA, δ is the homogeneous
line width. The spectral density of states for the dimerized
aggregate seems to be the simplest model that contains some
of the basic features manifested by disordered systems. This
originates from the “sawlike” site energy distribution, created
by the heterogeneity of the molecules within a unit cell. The
similarity is clearly seen by comparing the results presented in
Figure 4 with the Monte-Carlo simulations for an aggregate with
diagonal disorder.9

The strength of the optical transition to the exciton state is
given by the corresponding dipole strength:

wheredBnR ) 〈0|dB|nR〉 is the transition dipole moment anddB is
the corresponding dipole moment operator.
Let us now consider the case of a cyclic molecular aggregate

with two molecules per unit cell, the exciton spectrum of which
is defined in eq 8. Similar to the cyclic aggregate with a single
molecule per unit cell, the relative orientations of the transition
dipole moments and their dependence on the position in the
aggregate are important. In the notation of Figure 5, the scalar
product of transition dipole moments is described as follows:

whereR andâ determine the position of the molecules in the
unit cells (i.e., being equal to 1 and 2 according to the definitions
of Figure 5), γ and γ′ are the turning angles between the

transition dipole moments of the neighboring molecules from
different unit cells and within the same cell, respectively (i.e.,

γ )
2π
N
, 0 e γ′ e γ), and d is the absolute value of the

molecular transition dipole moment.
Due to the fact that in aggregates with periodic boundary

conditions we can change the sum overn by the sum overn -
m, only transitions into six exciton states are not equal to zero,
with two pairs of states (see also ref 8):

for the degenerate states of the aggregate and

for the nondegenerate states.
To determine the coefficientsuRν(k), we will use the corre-

sponding set of eqs 4 as well as the values of the exciton
energies determined by eq 8. By taking into account the
normalization conditions as given by eq 6, the following
relations are derived:

whereFν(k) )
|L12(k)|

Eν(k) - ∆1

, and

Correspondingly, by substituting these expressions into eqs
13 and 14, we obtain:

Figure 4. Density of states for the dimerized chain with heterogeneous
unit cells and takingN ) 9. In the inset we show for illustration, the
energy surface corresponding to a heterogeneous unit cell (solid line)
together with one of the realizations of a random distribution (dashed
line).
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Figure 5. Model structure of the circular dimerized aggregate.
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and

where in our notations, withk(a + b) ) γj andkb ) γ′j, we
have:

Equations 17 and 18 show that we have two allowed
transitions into each Davydov subband. However, in case all
transition moments are within the plane of the aggregate (i.e.,

whenθ1 ) θ2 )
π
2
), the dipole strength into the statesk ) 0

vanishes and only the transitions into the statesk) (γ remain
for each subband.
From the orientations and distances we furthermore can

calculate the CD spectrum, which in general is given by:12,13

The CD amplitude for a dimerized chain is proportional to

wherer is the radius of the circular aggregate,

and

The resonance interaction integralsVa andVb in the dipole-
dipole approximation can also be determined analytically and
for the orientations in Figure 5 they are equal to:

whereε0 is the dielectric constant andη is the refractive index
of the media. Equations 21-24 explicitly demonstrate the
extreme sensitivity of the CD spectra of circular aggregates on
the precise orientation of the pigments.

We will now use these results to evaluate the transition of
the absorption and CD spectra of the dimer upon formation of
the aggregate. Moreover, we will discuss the role of precise
orientation of the individual dipole moments in the aggregate.
As shown in Figure 6, changing the relative orientation of the
transition dipole moments within the unit cell and between the
cells strongly affects the relative position of the main absorption
as well as the sign of the CD. The absorption and CD spectra
shown in Figure 7 demonstrate the evolution of the spectra upon
going from the dimer (i.e., whenVa , Vb (see Figure 7a) to
the full aggregate; withVb ∼ Va, the latter corresponds to the
situation in the LH2 structure (see Figure 7c). It can clearly be
seen that the absorption spectrum is strongly influenced by the
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Figure 6. Absorption and CD spectra for the model aggregate shown
in Figure 5. In case (a)φ1 ) π/3, φ2 ) π/6, θ1 ) π/4, andθ2 ) π/7;
in case (b)φ1 ) π/5, φ2 ) π/2, θ1 ) π/3, andθ2 ) π/4. γ’ ) 0.3γ in
both cases. The site energies are∆1 ) 1 and∆2 ) 1.5, the interaction
energy inside the dimerVb ) -0.3, homogeneous widthδ ) |Vb|, (all
energies are in au).
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increasing interaction between the dimers. Furthermore, relative
changes in the inter- and intradimer rotational strength strongly
contribute to the shape and intensity of the CD spectrum of the
aggregate (see Figure 6 and Figure 7a-c). The parameters used
in Figure 7 are close to those derived from the structure of LH2.
The value and sign of the mismatch energy, however, is not
defined. The effect due to a change in sign of the mismatch is
demonstrated in Figure 7c,d.

Exciton Dynamics

To describe the exciton dynamics, the interaction of the
exciton with the vibrational modes of the molecules of the
aggregate, as well as that of the exciton with the vibrational
modes of the surrounding medium (i.e., protein), have to be
taken into account. These interactions cause the dephasing of
the exciton and introduce relaxation processes, which are of
paramount importance in the dynamics. They are accounted
for by means of the quantum Liouville equation.14 Since we
are interested in the time evolution of the excitons only, the
general Liouville equation for the whole system of excitons and
vibrational modes can be averaged over the vibrational degrees
of freedom. To do so, various approaches are possible. Here
we will use the so-called Haken-Strobl-Reineker approach15,16
where the vibrational subsystem is considered asδ-correlated
stochastic field (white noise). Thus, for a system with two

molecules per unit cell and, consequently, with two scaling
parameters the Liouville equation in the Haken-Strobl-Reineker
approach reduces to:

where FRâ(m,n) denotes the element of the density matrix
involving unit cell numbersm, nand site numbersR, â inside
the unit cell. Γ is the phase relaxation rate,∆ ) ∆1 - ∆2.
Neglecting terms describing the phase relations between

nonnearest neighbors,15 the following equation for the diagonal

a

b

c

d

Figure 7. Absorption and CD spectra for the model of the LH2 complex ofRp. acidophilaas a function of increasing the interdimer interaction
strength. The following parameters are assumed:φ1 ) 60°, φ2 ) 68°, θ1 ) 96°, andθ2 ) 100°; the energy is scaled inVb values; thus, the
interaction energy inside the dimer is assumed to beVb ) -1.0, homogeneous widthδ ) 0.2,γ′ ) 0.47γ. (a) is the dimer (i.e., artificially assuming
Va , Vb, (b) Va ) 0.5Vb). (c) is the model of the LH2 (i.e., the resonance interactions are calculated according to eqs 23 and 24), the spectral
heterogeneity of the molecules within the unit cell is assumed to be of the order ofVb; thus, site energies are∆1 ) -0.5 and∆2 ) 0.5 (in the units
of Vb) while in the case (d) the site energies are interchanged (i.e.,∆1 ) 0.5 and∆2 ) -0.5). Due to the relative energy scale used, valuesr, ε0,
andη do not influence the results.

i
d
dt

F11(m,n) ) VaF21(m- 1,n) - VaF12(m,n- 1)+

VbF21(m,n) - VbF12(m,n) - iΓ(1- δm,n)F11(m,n)

i
d
dt

F12(m,n) ) VaF22(m- 1,n) - VaF11(m,n+ 1)+

VbF22(m,n) - VbF11(m,n) + ∆F12(m,n) - iΓF12(m,n)

i
d
dt

F21(m,n) ) VaF11(m+ 1,n) - VaF22(m,n- 1)+

VbF11(m,n) - VbF22(m,n) - ∆F21(m,n) - iΓF21(m,n)

i
d
dt

F22(m,n) ) VaF12(m+ 1,n) - VaF21(m,n+ 1)+

VbF12(m,n) - VbF21(m,n) - iΓ(1- δm,n)F22(m,n) (25)
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density matrix elementsFR(m) ≡ FRR(m,m) can be obtained:

wherew1 ) 2Va
2/Γ and w2 ) 2Vb

2/Γ are excitation hopping
rates. Note that now the energy mismatch∆ in the dimer has
been set to zero.
Thus, eqs 26 represent a set of coupled wave-diffusion

equations, which transforms to the Master equation for the
hopping process in the two-component chain in the limit of large
Γ. In the opposite case (i.e., for small values ofΓ), eqs 25 turn
into wave-like equations.
Let us now consider the cyclic molecular aggregate of

relatively weakly coupled dimers (i.e., the main unit of the chain
is a dimer), while the energy transfer between the dimers is
nearly incoherent. In that case eqs 25 can be simplified by
assuming that between dimers (i.e.,n ) m ( 1) the phase
relaxation of the off-diagonal termsFRâ(m,n) is very fast. For
that case the following simplifications are valid:

All terms in eqs 27 containingVb describe the phase relaxation
between nonnearest neighbors (n ) m( 1). According to our
assumption of nearly incoherent energy transfer between dimers,
this phase relaxation can be neglected. Thus, in analogy to eqs
26 (i.e., by neglecting these terms), the following set of equations
for the second derivatives of the diagonal elements ofF can be
obtained:

where F(m, m) ) Fj(m)e-Γt (We note again that this result
corresponds to the case∆ ) 0). The set of eqs 28 in the case
of w1 ) 0 describes the system of uncoupled damped dimers.
This set of equations is a bit more complicated than eqs 26.
However, in principle, it allows us to discuss the excitation
dynamics for a system, for which phase relaxation within a
dimer of the unit cell is explicitly considered, while the
interdimer interaction determines the nearly incoherent exciton
transfer.

Discussion

In this paper we describe the spectroscopic properties and
excitation dynamics of circular aggregates of dimers, with the
aim to investigate the structure-function relationship of bacterial
light-harvesting complexes. In the following we will first

discuss the exciton spectrum of such a dimerized circular
aggregate and next the exciton transfer dynamics.
Exciton Spectrum. The presence of two molecules per unit

cell introduces a characteristic gap in the exciton energy
spectrum, that splits the two Davydov subbands. A unit cell
with the two molecules no longer equivalent can be obtained
either by a difference in the resonance interactions (nondiagonal
“disorder”) and/or by a difference in the molecular transition
energies (diagonal “disorder”). It is furthermore noteworthy
that this model of a chain with two molecules per unit cell
exhibits some of the essential features of a disordered aggregate.
This property is illustrated by comparing the density of states
as calculated according to eq 10 and presented in Figure 4 with
that obtained9 from a Monte-Carlo simulation for an aggregate
with diagonal disorder.
Also, as manifested by Figures 6 and 7, the absorption and

CD spectra of the circular chain of dimers are sensitive to (1)
the degree of coupling between the dimers, (2) the orientation
of the two molecules within the unit cell, and (3) the relative
orientation of adjacent unit cells. As Figure 7 shows, for
specific couplings characteristic, changes in absorption and CD
spectra can be observed. For an orientation of the transition
dipole moments as observed in the structure of LH2 ofRp.
acidophila,2,3 the absorption spectrum consists of a main
transition into the statej ) (1 of the long wavelength Davydov
subband and a weak transition into the same state in the blue
Davydov subband. The optical transitions into statesj ) 0 of
both subbands are very weak (less than 2% of the main
transition) because of the preferential orientation of the transition
dipole moments in the plane of the aggregate. Even assuming
a small homogeneous bandwidth (of the order of 10% or less
of the value of the resonance interaction between molecules
within a unit cell) both transitionsj ) 0 and j ) (1 become
indistinguishable in the optical spectrum; however, they are
exposed in the CD spectra. Moreover, changing the sign of
the relative orientation of the optical transition moments of both
molecules within the unit cell does not have an effect on the
absorption spectrum, but it makes a difference to the CD
spectrum, which changes its sign in the blue Davydov subband.
The same change of sign in the blue part of the CD spectrum
occurs when interchanging the site energy values in the dimer
(i.e., switching the sign of∆ (Figure 7c,d). This in principle
allows one to determine the value of the energy mismatch as
well as its sign. We remark, however, that this effect is sensitive
to the asymmetry inθ1 andθ2 as well as to the amount of the
mismatch between the site transition energies (see also Koolhaas
et al., submitted toJ. Phys. Chem.). For instance, for the chain
with one molecule per unit cell the blue part of the exciton
transition (the higher Davydov component) is absent.
Exciton Dynamics. The approach taken in this paper to

describe the excitation dynamics contains many of the essential
features inherent for LH2 (i.e., the excitation transfer is
determined by nearly incoherent energy transfer between the
main building blocks of the aggregatesdimers of coherently
linked molecules (Valkunas et al., submitted toJ. Phys. Chem.)).
This approach differs from that taken by others15,17 (see also
Herman and Barvik, submitted toJ. Phys. Chem.).
The exciton dynamics in our chain of dimers is for the case

of fast relaxation of the off-diagonal terms between pigments
in adjacent unit cells described by eqs 26 and 28. In general,
eqs 26 and 28 are mixed hyperbolic-parabolic equations which
are fairly close to the well-knowntelegraphicequations. In
case friction is absent (Γ ) 0) and assuming the first derivatives
initially to be zero, wavelike solutions are obtained, which
conserve the initial shape of the exciton distribution (nondis-
persive motion) and travel into opposite directions. For high

1
Γ
d2

dt2
F1(m) + d

dt
F1(m) ) w1F2(m- 1)+ w2F2(m) -

(w1 + w2)F1(m)

1
Γ
d2

dt2
F2(m) + d

dt
F2(m) ) w1F1(m+ 1)+ w2F1(m) -

(w1 + w2)F2(m) (26)

0≈ VaF22(m- 1,n) - VaF11(m,n+ 1)+ VbF22(m,n) -
VbF11(m,n) - iΓF12(m,n)

0≈ VaF11(m+ 1,n) - VaF22(m,n- 1)+ VbF11(m,n) -
VbF22(m,n) - iΓF12(m,n) (27)

d2

dt2
Fj1(m) - Γd

dt
Fj1(m) + w1( ddtFj1(m) - d

dt
Fj2(m- 1)) +

2Vb
2(Fj1(m) - Fj2(m)) ) 0

d2

dt2
Fj2(m) - Γd

dt
Fj2(m) + w1( ddtFj2(m) - d

dt
Fj1(m+ 1)) +

2Vb
2(Fj2(m) - Fj1(m)) ) 0 (28)
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values of the friction, a diffusion-like process appears, and the
initial shape of exciton distribution will be lost. Such diffusion-
like (incoherent exciton) movement of the excitation is widely
used in the analysis of the energy transfer problem in photo-
synthetic pigment-protein complexes.1,18,19 However, the more
general approach makes it possible to follow the transition from
wavelike to the diffusion-like motion of the excitation, depend-
ing on the internal parameters of the system.
One of the most important questions in the discussion of the

exciton dynamics on the basis of eqs 26 and 28 is the problem
of initial conditions. The most fascinating behavior can be
observed for localized initial conditions, which of course, is in
contradiction with the implied coherent character of the exciton
transport in the aggregate. It is worth to mention that these
localized initial conditions could arise even in the presence of
coherence in some experiments utilizing the effect of the local
heating,20,21which produces a funnel-like relaxation, following
excitation of these systems into some higher energy state. In
such a case and in the absence of damping a soliton-like motion

of the excitonic density is obtained. It is interesting to note
that atΓ ) 0 the nearest neighbor approximation for the off-
diagonal terms of the density matrix used in our approach (eqs
26) changes the exciton movement from the dispersive recon-
stitution of the plane wave behavior (which exhibitst2 like
motion inherent in eqs 25) to nondispersive motion with constant
velocity only. At moderateΓ values the dispersive motion of
the initial exciton distribution is pronounced (see Figure 8, for
instance) (i.e., the diffusion process becomes more and more
dominant, erasing the solitonic features of the exciton motion).
A detailed analysis of the system of eqs 26 and 28 is rather

complicated and will be presented elsewhere together with a
description of the effects due to the energy mismatch within
the dimer.
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