63 research outputs found

    Electrostatic Patch Effect in Cylindrical Geometry. III. Torques

    Full text link
    We continue to study the effect of uneven voltage distribution on two close cylindrical conductors with parallel axes started in our papers [1] and [2], now to find the electrostatic torques. We calculate the electrostatic potential and energy to lowest order in the gap to cylinder radius ratio for an arbitrary relative rotation of the cylinders about their symmetry axis. By energy conservation, the axial torque, independent of the uniform voltage difference, is found as a derivative of the energy in the rotation angle. We also derive both the axial and slanting torques by the surface integration method: the torque vector is the integral over the cylinder surface of the cross product of the electrostatic force on a surface element and its position vector. The slanting torque consists of two parts: one coming from the interaction between the patch and the uniform voltages, and the other due to the patch interaction. General properties of the torques are described. A convenient model of a localized patch suggested in [2] is used to calculate the torques explicitly in terms of elementary functions. Based on this, we analyze in detail patch interaction for one pair of patches, namely, the torque dependence on the patch parameters (width and strength) and their mutual positions. The effect of the axial torque is then studied for the experimental conditions of the STEP mission.Comment: 28 pages, 6 Figures. Submitted to Classical Quantum Gravit

    Dark gravitomagnetism with LISA and gravitational waves space detectors

    Get PDF
    We present here the proposal to use the LISA interferometer for detecting the gravito- magnetic field due to the rotation of the Milky Way, including the contribution given by the dark matter halo. The galactic signal would be superposed to the gravitomagnetic field of the Sun. The technique to be used is based on the asymmetric propagation of light along the closed contour of the space interferometer (Sagnac-like approach). Both principle and practical aspects of the proposed experiment are discussed. The strategy for disentangling the sought for signal from the kinematic terms due to proper rotation and orbital motion is based on the time modulation of the time of flight asymmetry. Such modulation will be originated by the annual oscillation of the plane of the interfer- ometer with respect to the galactic plane. Also the effect of the gravitomagnetic field on the polarization of the electromagnetic signals is presented as an in principle detectable phenomenon

    Patch effect in drag-free satelites

    Get PDF
    To compensate for the non–gravitational orbital disturbances drag free satellites monitor and control their position with respect to a reference body enclosed inside their structure. The body, shielded from the environment, follows a free fall trajectory when its motion can be ideally considered decoupled from that of the spacecraft. Lessons learned from Gravity Probe B and the design of the Satellite Test of the Equivalence Principle experiment strongly motivate the study of the force and torque between the reference body and the spacecraft due to uneven distributions of electrostatic potentials. Additional interest to that comes also from prospective space experiments as Microscope and the Laser Interferometer Space Antenna

    The role of low-energy electrons in the charging process of LISA test masses

    Get PDF
    The estimate of the total electron yield is fundamental for our understanding of the test-mass charging associated with cosmic rays in the Laser Interferometer Space Antenna (LISA) Pathfinder mission and in the forthcoming gravitational wave observatory LISA. To unveil the role of low energy electrons in this process owing to galactic and solar energetic particle events, in this work we study the interaction of keV and sub-keV electrons with a gold slab using a mixed Monte Carlo (MC) and ab-initio framework. We determine the energy spectrum of the electrons emerging from such a gold slab hit by a primary electron beam by considering the relevant energy loss mechanisms as well as the elastic scattering events. We also show that our results are consistent with experimental data and MC simulations carried out with the GEANT4-DNA toolkit

    Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders

    Full text link
    We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindrical configuration are derived and analyzed in the next two parts of this work.Comment: 26 pages, 1 Figure. Submitted to Classical and Quantum Gravit

    Data series subtraction with unknown and unmodeled background noise

    Full text link
    LISA Pathfinder (LPF), ESA's precursor mission to a gravitational wave observatory, will measure the degree to which two test-masses can be put into free-fall, aiming to demonstrate a residual relative acceleration with a power spectral density (PSD) below 30 fm/s2^2/Hz1/2^{1/2} around 1 mHz. In LPF data analysis, the measured relative acceleration data series must be fit to other various measured time series data. This fitting is required in different experiments, from system identification of the test mass and satellite dynamics to the subtraction of noise contributions from measured known disturbances. In all cases, the background noise, described by the PSD of the fit residuals, is expected to be coloured, requiring that we perform such fits in the frequency domain. This PSD is unknown {\it a priori}, and a high accuracy estimate of this residual acceleration noise is an essential output of our analysis. In this paper we present a fitting method based on Bayesian parameter estimation with an unknown frequency-dependent background noise. The method uses noise marginalisation in connection with averaged Welch's periodograms to achieve unbiased parameter estimation, together with a consistent, non-parametric estimate of the residual PSD. Additionally, we find that the method is equivalent to some implementations of iteratively re-weighted least-squares fitting. We have tested the method both on simulated data of known PSD, and to analyze differential acceleration from several experiments with the LISA Pathfinder end-to-end mission simulator.Comment: To appear Phys. Rev. D90 August 201

    Laser Interferometer Space Antenna

    Get PDF
    Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESA's call for missions for L3. The observatory will be based on three arms with six active laser links, between three identical spacecraft in a triangular formation separated by 2.5 million km. LISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the infant Universe at TeV energy scales, has known sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales near the horizons of black holes, all the way to cosmological scales. The LISA mission will scan the entire sky as it follows behind the Earth in its orbit, obtaining both polarisations of the Gravitational Waves simultaneously, and will measure source parameters with astrophysically relevant sensitivity in a band from below 10−4 10^{-4}\,Hz to above 10−1 10^{-1}\,Hz.Comment: Submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programm
    • …
    corecore